Plugin type: minimizer/singlecost

These plug-ins provide optimizers of many-to-one functions

Plugins:

gdas gdsq gsl nlopt

gdas

Gradient descent with automatic step size correction.. Supported parameters are:

NameTypeDefaultDescription
ftolrdouble in [0, inf)0Stop if the relative change of the criterion is below.
max-stepdouble in (0, inf)2Maximal absolute step size
maxiteruint in [1, inf)200Stopping criterion: the maximum number of iterations
min-stepdouble in (0, inf)0.1Minimal absolute step size
xtoladouble in [0, inf)0.01Stop if the inf-norm of the change applied to x is below this value.

gdsq

Gradient descent with quadratic step estimation. Supported parameters are:

NameTypeDefaultDescription
ftolrdouble in [0, inf)0Stop if the relative change of the criterion is below.
gtoladouble in [0, inf)0Stop if the inf-norm of the gradient is below this value.
maxiteruint in [1, inf)100Stopping criterion: the maximum number of iterations
scaledouble in (1, inf)2Fallback fixed step size scaling
stepdouble in (0, inf)0.1Initial step size
xtoladouble in [0, inf)0Stop if the inf-norm of x-update is below this value.

gsl

optimizer plugin based on the multimin optimizers of the GNU Scientific Library (GSL) https://www.gnu.org/software/gsl/. Supported parameters are:

NameTypeDefaultDescription
epsdouble in (0, inf)0.01gradient based optimizers: stop when |grad| < eps, simplex: stop when simplex size < eps.
iteruint in [1, inf)100maximum number of iterations
optdictgd
Specific optimizer to be used.
gd:Gradient descent.
bfgs:Broyden-Fletcher-Goldfarb-Shann
simplex:Simplex algorithm of Nelder and Mead
cg-pr:Polak-Ribiere conjugate gradient algorithm
bfgs2:Broyden-Fletcher-Goldfarb-Shann (most efficient version)
cg-fr:Flecher-Reeves conjugate gradient algorithm
stepdouble in (0, inf)0.001initial step size
toldouble in (0, inf)0.1some tolerance parameter

nlopt

Minimizer algorithms using the NLOPT library, for a description of the optimizers please see 'http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms'. Supported parameters are:

NameTypeDefaultDescription
ftoladouble in [0, inf)0Stopping criterion: the absolute change of the objective value is below this value
ftolrdouble in [0, inf)0Stopping criterion: the relative change of the objective value is below this value
higherdoubleinfHigher boundary (equal for all parameters)
local-optdictnone
local minimization algorithm that may be required for the main minimization algorithm.
ln-newuoa-bound:Derivative-free Bound-constrained Optimization by Iteratively Constructed Quadratic Approximation
ld-lbfgs:Low-storage BFGS
ln-praxis:Gradient-free Local Optimization via the Principal-Axis Method
ld-lbfgs-nocedal: 
gn-direct-l-rand:Dividing Rectangles (locally biased, randomized)
gn-orig-direct:Dividing Rectangles (original implementation)
none:don't specify algorithm
gn-direct:Dividing Rectangles
ld-var1:Shifted Limited-Memory Variable-Metric, Rank 1
gn-direct-noscal:Dividing Rectangles (unscaled)
ld-mma:Method of Moving Asymptotes
gn-crs2-lm:Controlled Random Search with Local Mutation
ld-tnewton-restart:Truncated Newton with steepest-descent restarting
ld-tnewton-precond-restart:Preconditioned Truncated Newton with steepest-descent restarting
gn-isres:Improved Stochastic Ranking Evolution Strategy
gn-direct-l-noscal:Dividing Rectangles (unscaled, locally biased)
ln-bobyqa:Derivative-free Bound-constrained Optimization
ld-var2:Shifted Limited-Memory Variable-Metric, Rank 2
ld-tnewton:Truncated Newton
ln-sbplx:Subplex variant of Nelder-Mead
ld-tnewton-precond:Preconditioned Truncated Newton
gn-direct-l-rand-noscale:Dividing Rectangles (unscaled, locally biased, randomized)
ln-cobyla:Constrained Optimization BY Linear Approximation
ln-neldermead:Nelder-Mead simplex algorithm
gn-orig-direct-l:Dividing Rectangles (original implementation, locally biased)
gn-direct-l:Dividing Rectangles (locally biased)
ln-newuoa:Derivative-free Unconstrained Optimization by Iteratively Constructed Quadratic Approximation
lowerdouble-infLower boundary (equal for all parameters)
maxiterint in [1, inf)100Stopping criterion: the maximum number of iterations
optdictld-lbfgs
main minimization algorithm
ln-newuoa-bound:Derivative-free Bound-constrained Optimization by Iteratively Constructed Quadratic Approximation
ld-lbfgs:Low-storage BFGS
ln-praxis:Gradient-free Local Optimization via the Principal-Axis Method
ld-lbfgs-nocedal: 
gn-direct-l-rand:Dividing Rectangles (locally biased, randomized)
gn-orig-direct:Dividing Rectangles (original implementation)
gn-direct:Dividing Rectangles
ld-var1:Shifted Limited-Memory Variable-Metric, Rank 1
auglag-eq:Augmented Lagrangian algorithm with equality constraints only
gn-direct-noscal:Dividing Rectangles (unscaled)
ld-mma:Method of Moving Asymptotes
gn-crs2-lm:Controlled Random Search with Local Mutation
ld-tnewton-restart:Truncated Newton with steepest-descent restarting
ld-tnewton-precond-restart:Preconditioned Truncated Newton with steepest-descent restarting
gn-isres:Improved Stochastic Ranking Evolution Strategy
ld-slsqp:Sequential Least-Squares Quadratic Programming
gn-direct-l-noscal:Dividing Rectangles (unscaled, locally biased)
ln-bobyqa:Derivative-free Bound-constrained Optimization
ld-var2:Shifted Limited-Memory Variable-Metric, Rank 2
ld-tnewton:Truncated Newton
ln-sbplx:Subplex variant of Nelder-Mead
ld-tnewton-precond:Preconditioned Truncated Newton
gn-direct-l-rand-noscale:Dividing Rectangles (unscaled, locally biased, randomized)
ln-cobyla:Constrained Optimization BY Linear Approximation
auglag:Augmented Lagrangian algorithm
ln-neldermead:Nelder-Mead simplex algorithm
gn-orig-direct-l:Dividing Rectangles (original implementation, locally biased)
gn-direct-l:Dividing Rectangles (locally biased)
ln-newuoa:Derivative-free Unconstrained Optimization by Iteratively Constructed Quadratic Approximation
g-mlsl-lds:Multi-Level Single-Linkage (low-discrepancy-sequence, require local gradient based optimization and bounds)
g-mlsl:Multi-Level Single-Linkage (require local optimization and bounds)
stepdouble in [0, inf)0Initial step size for gradient free methods
stopdouble-infStopping criterion: function value falls below this value
xtoladouble in [0, inf)0Stopping criterion: the absolute change of all x-values is below this value
xtolrdouble in [0, inf)0Stopping criterion: the relative change of all x-values is below this value

Plugin consumers:

mia-2dgroundtruthreg mia-2dimageregistration mia-2dmultiimageregistration mia-2dmyoica-full mia-2dmyoica-nonrigid mia-2dmyoica-nonrigid2 mia-2dmyoica-nonrigid-parallel mia-2dmyoicapgt mia-2dmyomilles mia-2dmyoperiodic-nonrigid mia-2dmyopgt-nonrigid mia-2dmyoserial-nonrigid mia-3dnonrigidreg mia-3dnonrigidreg-alt mia-3dprealign-nonrigid mia-3drigidreg mia-3dserial-nonrigid