Next: Convolution filter
Up: Mathematical Derivations
Previous: Discretizing the Navier-Stokes-Equation
Substituting
,
,
we obtain:
![$\displaystyle \left. \begin{array}{ll} \mathbf{p}= & \hat{\mathbf{f}}_{i,j,k}+c...
...athbf{v}^{(m+1)}_{i,j,k-1}+\mathbf{v}^{(m)}_{i,j,k+1}\right) \end{array}\right.$](img53.png) |
(19) |
Setting
we may write
![\begin{displaymath}\begin{array}{ll} q_{x}=e & \left( s^{(m+1)}_{i-1,j-1,k}+s^{(...
...-s^{(m)}_{i,j-1,k+1}-s^{(m+1)}_{i,j+1,k-1}\right) , \end{array}\end{displaymath}](img55.png) |
(20) |
hence for the residual vector
![$\displaystyle \mathbf{r}_{i,j,k}=\omega \left( \mathbf{p}+\mathbf{q}-\mathbf{v}^{m}_{i,j,k}\right) ,$](img56.png) |
(21) |
and the SOR update of
is given by
![$\displaystyle \mathbf{v}^{(m+1)}_{i,j,k}=\mathbf{v}^{(m)}_{i,j,k}+\mathbf{r}_{i,j,k}.$](img58.png) |
(22) |
Gert Wollny
2003-03-17