next up previous
Next: SOR update Up: Mathematical Derivations Previous: Mathematical Derivations

Discretizing the Navier-Stokes-Equation

$\displaystyle \mu \nabla ^{2}\mathbf{v}+(\mu +\lambda )\nabla (\nabla \cdot \mathbf{v})=-\mathbf{f}$ (12)

$\displaystyle \mu \left( \frac{\partial ^{2}}{\partial x^{2}}+\frac{\partial ^{...
...\frac{\partial ^{2}}{\partial z^{2}} \end{array}\right) \mathbf{v}=-\mathbf{f},$ (13)

For the x-component of (13) we may write:

$\displaystyle \mu \left( \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\par...
... \partial y}+\frac{\partial^2v^{(z)}}{\partial x \partial z}\right) = -f^{(x)},$ (14)

$\displaystyle (2\mu +\lambda )\frac{\partial^2v^{(x)}}{\partial x^2}+\mu \left(...
... \partial y}+\frac{\partial^2v^{(z)}}{\partial x \partial z}\right) = -f^{(x)}.$ (15)

Discretizing this using numerical derivatives based on finite differences (8, pp. 186-189) yields

\begin{displaymath}\begin{array}{ll} \frac{(2\mu +\lambda)}{h^2} \left( v^{(x)}_...
...{i-1,j,k-1}-v_{i+1,j,k-1}^{(z)}\right) & =-f^{(x)} \end{array}.\end{displaymath} (16)

With shortcuts $ a=\frac{\mu }{h^2} $, $ b=\frac{\mu +\lambda }{h^2} $ follows,

\begin{displaymath}\begin{array}{ll} v_{i,j,k}^{(x)}+\frac{(a+b)}{(6a+2b)}\left(...
...+1,j,k-1}^{(z)}\right) & =\frac{1}{(6a+2b)}f^{(x)} \end{array}.\end{displaymath} (17)

y- and z- components can be obtained in a similar manner.

With $ \hat{\mathbf{f}}:=\frac{1}{(6a+2b)}\mathbf{f} $, writing (12) in its discretized representation yields a linear system

$\displaystyle \mathbf{Av}=\hat{\mathbf{f}}.$ (18)


next up previous
Next: SOR update Up: Mathematical Derivations Previous: Mathematical Derivations
Gert Wollny 2003-03-17