Next: SOR update
Up: Mathematical Derivations
Previous: Mathematical Derivations
![$\displaystyle \mu \nabla ^{2}\mathbf{v}+(\mu +\lambda )\nabla (\nabla \cdot \mathbf{v})=-\mathbf{f}$](img40.png) |
(12) |
![$\displaystyle \mu \left( \frac{\partial ^{2}}{\partial x^{2}}+\frac{\partial ^{...
...\frac{\partial ^{2}}{\partial z^{2}} \end{array}\right) \mathbf{v}=-\mathbf{f},$](img41.png) |
(13) |
For the x-component of (13) we may write:
![$\displaystyle \mu \left( \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\par...
... \partial y}+\frac{\partial^2v^{(z)}}{\partial x \partial z}\right) = -f^{(x)},$](img42.png) |
(14) |
![$\displaystyle (2\mu +\lambda )\frac{\partial^2v^{(x)}}{\partial x^2}+\mu \left(...
... \partial y}+\frac{\partial^2v^{(z)}}{\partial x \partial z}\right) = -f^{(x)}.$](img43.png) |
(15) |
Discretizing this using numerical derivatives based on finite differences (8, pp. 186-189) yields
![\begin{displaymath}\begin{array}{ll} \frac{(2\mu +\lambda)}{h^2} \left( v^{(x)}_...
...{i-1,j,k-1}-v_{i+1,j,k-1}^{(z)}\right) & =-f^{(x)} \end{array}.\end{displaymath}](img44.png) |
(16) |
With shortcuts
,
follows,
![\begin{displaymath}\begin{array}{ll} v_{i,j,k}^{(x)}+\frac{(a+b)}{(6a+2b)}\left(...
...+1,j,k-1}^{(z)}\right) & =\frac{1}{(6a+2b)}f^{(x)} \end{array}.\end{displaymath}](img47.png) |
(17) |
y- and z- components can be obtained in a similar manner.
With
, writing (12)
in its discretized representation yields a linear system
![$\displaystyle \mathbf{Av}=\hat{\mathbf{f}}.$](img49.png) |
(18) |
Next: SOR update
Up: Mathematical Derivations
Previous: Mathematical Derivations
Gert Wollny
2003-03-17