next up previous
Next: Algorithms Up: Mathematical Derivations Previous: SOR update


Convolution filter

The linear operator of PDE (7) $ \Lambda $ is defined as:

$\displaystyle \Lambda :=\mu \nabla ^{2}+(\mu +\lambda )\nabla (\nabla \cdot)$ (23)

and its eigenvalues are (5):

\begin{displaymath}\begin{array}{l} \kappa _{1,i,j,k}=-\pi ^{2}(2\mu +\lambda )(...
...\kappa _{3,i,j,k}=-\pi ^{2}\mu (i^{2}+j^{2}+k^{2}), \end{array}\end{displaymath} (24)


with associated eigenvectors:

\begin{displaymath}\begin{array}{c} \phi _{1,i,j,k}(\vec{x})=\sqrt{\frac{8}{i^{2...
...+j^{2})\: ccs_{i,j,k}(\vec{x}) \end{array}\right) , \end{array}\end{displaymath} (25)


where $ \vec{x}\in \Omega $,

\begin{displaymath}\begin{array}{c} scc_{i,j,k}(\vec{x})=\sin (i\pi x)\cos (j\pi...
...}(\vec{x})=\cos (i\pi x)\cos (j\pi y)\sin (k\pi z), \end{array}\end{displaymath} (26)

and

$\displaystyle \Gamma _{i,j,k}=2^{\text{sign}(i)+\text{sign}(j)+\text{sign}(k)}.$ (27)

By introducing a filter width parameter $ w>0 $, $ w\in \mathbf{N} $, which spawns a filter of size $ 2w+1 $, and with the shortcut:

$\displaystyle \alpha _{i,j,k}=\frac{8}{\pi ^{2}\mu (2\mu +\lambda )(i^{2}+j^{2}+k^{2})^{2}\Gamma _{i,j,k}}$ (28)

the components of the impulse response $ \Theta \in {\mathbb{R}}^{3× 3} $ of the linear operator $ \Lambda $ can be written as (3):

\begin{displaymath}\begin{array}{c} \Theta ^{x}(\mathbf{y})=\sum^{2w}_{i,j,k=0}\...
...,k}(\mathbf{y}+\mathbf{y}_{c}) \end{array}\right) , \end{array}\end{displaymath} (29)

with $ \mathbf{y}_{c}=(0.5,0.5,0.5)^{T} $ and $ \mathbf{y}\in \{y_{r,s,t}=(\frac{r}{d},\frac{s}{d},\frac{t}{d})^{T}\vert\: r,s,t\in [-d,d]\cap \mathbf{Z}\} $.


next up previous
Next: Algorithms Up: Mathematical Derivations Previous: SOR update
Gert Wollny 2003-03-17