21 #ifndef __mia_core_kmeans_hh 22 #define __mia_core_kmeans_hh 32 #include <boost/concept/requires.hpp> 33 #include <boost/concept_check.hpp> 40 template <
typename InputIterator,
typename OutputIterator>
41 bool kmeans_step(InputIterator ibegin, InputIterator iend, OutputIterator obegin,
42 std::vector<double>& classes,
size_t l,
int& biggest_class )
45 for (
size_t i = 0; i <= l; ++i )
46 cverb << std::setw(8) << classes[i]<<
" ";
50 const double convLimit = 0.005;
51 std::vector<double> sums(classes.size());
52 std::vector<size_t> count(classes.size());
57 while( iter-- && !conv) {
59 sort(classes.begin(), classes.end());
62 OutputIterator ob = obegin;
63 for (InputIterator b = ibegin; b != iend; ++b, ++ob) {
72 for (
size_t i = 0; i <= l; i++) {
74 double a = sums[i] / count[i];
75 if (a &&
fabs ((a - classes[i]) / a) > convLimit)
79 if (max_count < count[i]) {
85 classes[i] = (classes[i] + classes[i + 1]) / 2.0;
87 classes[i] = (classes[i] + classes[i - 1]) / 2.0;
95 cvinfo()<<
"kmeans: " << l + 1 <<
" classes, " << 50 - iter <<
" iterations";
96 for (
size_t i = 0; i <= l; ++i )
97 cverb << std::setw(8) << classes[i]<<
" ";
104 template <
typename InputIterator,
typename OutputIterator>
106 std::vector<double>& classes,
const std::vector<bool>& fixed_center,
107 size_t l,
int& biggest_class )
110 for (
size_t i = 0; i <= l; ++i )
111 cverb << std::setw(8) << classes[i]<<
" ";
115 const double convLimit = 0.005;
116 std::vector<double> sums(classes.size());
117 std::vector<size_t> count(classes.size());
122 while( iter-- && !conv) {
124 sort(classes.begin(), classes.end());
127 OutputIterator ob = obegin;
128 for (InputIterator b = ibegin; b != iend; ++b, ++ob) {
136 size_t max_count = 0;
137 for (
size_t i = 0; i <= l; i++) {
141 double a = sums[i] / count[i];
142 if (a &&
fabs ((a - classes[i]) / a) > convLimit)
146 if (max_count < count[i]) {
147 max_count = count[i];
152 classes[i] = (classes[i] + classes[i + 1]) / 2.0;
154 classes[i] = (classes[i] + classes[i - 1]) / 2.0;
162 cvinfo()<<
"kmeans: " << l + 1 <<
" classes, " << 50 - iter <<
" iterations";
163 for (
size_t i = 0; i <= l; ++i )
164 cverb << std::setw(8) << classes[i]<<
" ";
187 template <
typename InputIterator,
typename OutputIterator>
188 BOOST_CONCEPT_REQUIRES( ((::boost::ForwardIterator<InputIterator>))
189 ((::boost::Mutable_ForwardIterator<OutputIterator>)),
192 kmeans(InputIterator ibegin, InputIterator iend, OutputIterator obegin,
193 std::vector<
double>& classes)
195 if (classes.size() < 2)
196 throw create_exception<std::invalid_argument>(
"kmeans: requested ", classes.size(),
197 "class(es), required are at least two");
199 const size_t nclusters = classes.size();
200 const double size = std::distance(ibegin, iend);
201 if ( size < nclusters )
202 throw create_exception<std::invalid_argument>(
"kmeans: insufficient input: want ", nclusters ,
203 " classes, but git only ", size,
" input elements");
208 classes[0] = sum / (size - 1);
209 classes[1] = sum / (size + 1);
212 int biggest_class = 0;
218 kmeans_step(ibegin, iend, obegin, classes, 1, biggest_class);
221 for (
size_t l = 2; l < nclusters; l++) {
222 const size_t pos = biggest_class > 0 ? biggest_class - 1 : biggest_class + 1;
223 classes[l] = 0.5 * (classes[biggest_class] + classes[pos]);
224 kmeans_step(ibegin, iend, obegin, classes, l, biggest_class);
228 for (
size_t l = 1; l < 3; l++) {
229 if (
kmeans_step(ibegin, iend, obegin, classes, nclusters - 1, biggest_class))
vstream & cvinfo()
informal output that may be of interest to understand problems with a program and are of higher prior...
void kmeans(InputIterator ibegin, InputIterator iend, OutputIterator obegin, std::vector< double > &classes)
#define cverb
define a shortcut to the raw output stream
#define NS_MIA_BEGIN
conveniance define to start the mia namespace
bool kmeans_step(InputIterator ibegin, InputIterator iend, OutputIterator obegin, std::vector< double > &classes, size_t l, int &biggest_class)
int EXPORT_CORE kmeans_get_closest_clustercenter(const std::vector< double > &classes, size_t l, double value)
double fabs(const T3DVector< T > &t)
A way to get the norm of a T3DVector using faba syntax.
static F::result_type accumulate(F &f, const B &data)
#define EXPORT_CORE
Macro to manage Visual C++ style dllimport/dllexport.
bool kmeans_step_with_fixed_centers(InputIterator ibegin, InputIterator iend, OutputIterator obegin, std::vector< double > &classes, const std::vector< bool > &fixed_center, size_t l, int &biggest_class)
#define NS_MIA_END
conveniance define to end the mia namespace