mia-2dsegment-per-pixel-kmeans

Sysnopis:

mia-2dsegment-per-pixel-kmeans {-i io} {-o io} [ options ...]

Description:

This program runs the segmentation of a 2D image by applying a localized k-means approach that helps to overcome intensity inhomogeneities in the image. The approach evaluates a global k-means clustering, and then separates the image into overlapping regions where more k-means iterations are run only including the locally present classes, i.e. the classes that relatively contain more pixels than a given threshold.

Options:

File-IO

-i, --in-file=(input, required); io

image to be segmented. For supported file types see Plugin type: 2dimage/io

-o, --out-file=(required, output); io

class label image based on merging local labels. For supported file types see Plugin type: 2dimage/io

Help & Info

-V, --verbose=warning; dict

verbosity of output, print messages of given level and higher priorities. Supported priorities starting at lowest level are:

debug:Debug output
message:Normal messages
info:Low level messages
error:Report errors
fatal:Report only fatal errors
trace:Function call trace
warning:Warnings
fail:Report test failures
--copyright=(); bool

print copyright information

-h, --help=(); bool

print this help

-?, --usage=(); bool

print a short help

--version=(); bool

print the version number and exit

Parameters

-w, --window=20; int in [3, inf)

Window size around the pixel to be analyzed

-n, --nclasses=3; uint in [2, 127]

Number of intensity classes to segment

-t, --relative-cluster-threshold=0.0001; double in [0, 1)

Number of intensity classes to segment

Processing

--threads=-1; int

Maxiumum number of threads to use for processing,This number should be lower or equal to the number of logical processor cores in the machine. (-1: automatic estimation).

Example:

Run the segmentation on image test.png using three classes, local regions of 40 pixels (grid width 20 pixels), and a class ignore threshold of 0.01.

mia-2dsegment-per-pixel-kmeans -i test.png -o label.png -n 3 -g 20 -t 0.01

Author(s):

Gert Wollny