mia-2dsegment-local-cmeans

Sysnopis:

mia-2dsegment-local-cmeans {-i io} [ options ...]

Description:

This program runs the segmentation of a 2D image by applying a localized c-means approach that helps to overcome intensity inhomogeneities in the image. The approach evaluates a global c-means clustering, and then separates the image into overlapping regions where more c-means iterations are run only including the locally present classes, i.e. the classes that relatively contain more pixels than a given threshold. This program implements a 2D prototype of the algorithm described in:

Dunmore CJ, Wollny G, Skinner MM. (2018) MIA-Clustering: a novel method for segmentation of paleontological material. PeerJ 6:e4374.

Options:

File-IO

-i, --in-file=(input, required); io

image to be segmented. For supported file types see Plugin type: 2dimage/io

-o, --out-file=(output); io

class label image based on merging local labels. For supported file types see Plugin type: 2dimage/io

-G, --out-global-crisp=(output); io

class label image based on global segmentation. For supported file types see Plugin type: 2dimage/io

-C, --class-prob=(output); io

class probability image file, filetype must support floating point multi-frame images. For supported file types see Plugin type: 2dimage/io

Help & Info

-V, --verbose=warning; dict

verbosity of output, print messages of given level and higher priorities. Supported priorities starting at lowest level are:

debug:Debug output
message:Normal messages
info:Low level messages
error:Report errors
fatal:Report only fatal errors
trace:Function call trace
warning:Warnings
fail:Report test failures
--copyright=(); bool

print copyright information

-h, --help=(); bool

print this help

-?, --usage=(); bool

print a short help

--version=(); bool

print the version number and exit

Parameters

-g, --grid-spacing=15; int in [3, inf)

Spacing of the grid used to modulate the intensity inhomogeneities

-c, --cmeans=kmeans:nc=3; factory

c-means initializer. For supported plug-ins see Plugin type: 1d/cmeans

-e, --c-means-epsilon=0.0001; float in (0, inf)

c-means breaking condition for update tolerance

-t, --relative-cluster-threshold=0.02; double in [0, 1)

threshhold to ignore classes when initializing the local cmeans from the global one.

Processing

--threads=-1; int

Maxiumum number of threads to use for processing,This number should be lower or equal to the number of logical processor cores in the machine. (-1: automatic estimation).

Example:

Run the segmentation on image test.png using three classes, local regions of 40 pixels (grid width 20 pixels), and a class ignore threshold of 0.01.

mia-2dsegment-local-cmeans -i test.png -o label.png -n 3 -g 20 -t 0.01

Author(s):

Gert Wollny