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Computional Cost of Non-Rigid Registration
Algorithms based on Fluid Dynamics

Gert Wollny and Frithjof Kruggel

Abstract— Though fluid dynamics offer a good approach to non-rigid
registration and give accurate results, even with large scale deformations,
its application is still very time consuming. We introduce and discuss differ-
ent approaches to solve the core problem of non-rigid registration, the par-
tial differential equation of fluid dynamics. We focus on the solvers, their
computional costs and the accuracy of registration. Numerical experiments
show that relaxation is currently the best approach, especially when reduc-
ing the cost per iteration by focusing the updates on deformation spots.

Keywords— registration, fluid dynamics, computional cost, medical im-
ages

I. INTRODUCTION

Non-rigid image registration is a problem in medical com-
puter vision that has many applications. For instance, non-rigid
registration can be used to detect changes in MR time series im-
ages, arising when pathological processes (e.g. tumor growth,
scarification, and atrophies) are monitored by a temporal series
of MR examinations. Another application is non-rigid image-
atlas registration that is used to locate brain-structures in the im-
ages.

Registration is achieved by applying one transformation to
one image (which we call the study image), in order to match
another (reference) image with respect to a given cost function.
In practice, these transformations must accommodate both very
complex and large deformations.

Early approaches of non-rigid registration, first introduced by
Baiscy et al. [1], [2], later by Evans et al. [3], Miller et al. [4],
and Christensen et al. [5], were all based on linear elasticity.
As linear elasticity restricts the registration to globally smooth
and therefore to locally small deformations, these methods fail
to achieve very complex and/or large deformations. In an ex-
tension to their initial work, Christensen et al. [6] described a
registration approach in which a viscous fluid model was used to
control the deformation. In particular, the study image is mod-
eled as a viscous fluid which is able to flow so as to match the
reference. In this model internal forces disappear gradually, due
to the attenuation in viscous fluids. This way, the desired defor-
mation can be fully achieved, even if large scale deformations
are required. Other approaches to non-rigid registration are dis-
cussed in the literature (cf. e.g. [7], [8], [9]), but will not be
considered in this paper.

The original implementation of fluid dynamics based registra-
tion, based on successive over-relaxation (SOR), is demanding
with respect to (w.r.t.) computional cost and is thus time con-
suming. Bro-Nielsen et al. [10] proposed a further algorithm,
based on convolution filters (CONV). They suggest that its per-
formance results in a speedup of at least an order of magnitude.

In this paper, we will compare the original algorithm of Chris-
tensen [6], to the convolution based algorithm of Bro-Nielsen
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[10], and to an alternative, which is based on the minimum resid-
ual algorithm (MINRES), in terms of speed, memory usage, and
registration accuracy. We will study optimization by employing
an adaptive update scheme, which focuses on regions with sig-
nificant deformations. Finally, we will demonstrate that it is
possible to achieve good registration results for high resolution
MRI brain image data sets, in a reasonable amount of time on
workstation class computers.

II. REGISTRATION BASED ON FLUID DYNAMICS

If not indicated otherwise, all numbers, vectors, matrices, and
functions considered in this paper are real. Vectors are denoted
as bold lower case characters, such as, � , and � , matrices appear
as bold face upper case letters.

An image I is defined as a mapping
������� 	

, with�
���� ���������������
being the image domain and

	����
be-

ing the (intensity-) range. The ordered pair � � ��� � �! � #" �%$&	
of a coordinate, and its corresponding intensity value is called a
voxel (volume element). In the following ' �(�)�*	

denotes
the reference and + �,�-�.	

the study image.
The transformation / �,�-�.�

of an image I is a mapping of
the image domain to itself, and 0 is the set of all such transfor-
mations. Following Christensen et al. [6], we use an Eulerian
reference frame to describe a transformation T. Here, voxels of
the deforming image are tracked by their position. Given a vec-
tor field 1 , and a voxel originating at � , at time 243 ���5�

. With16� � � 2  being the displacement of this voxel at time 2 , its new
location will be �87 16� � � 2  . Hence, transformation T is defined
as /9� � � 2  ��� �:7 16� � � 2  . The concatenation of two transforma-
tions /!; and /(< with the displacement fields 1=; and 1>< is given
by:

/?;A@B/(< ��� ��7 1�;C� �D7 1><,� �! 4 =7 1E<C� �! GF (1)

Additionally, the velocity field in an Eulerian reference frame is
determined by [6]:

�B� � � 2  �IH 16� � � 2  
H 2 J

K 16� � � 2  �L� � � 2  � (2)

with the latter term
K 1B� � � 2  �B� � � 2  accounting for the kine-

matic non-linearity of the voxels.
The purpose of registration is to find a transformation /?MAN O ,

which minimizes a given cost function P=QR�S/ETU+ � '  in conjunc-
tion with some energy normalization (or smoothness measure)V �W/  :

/XMAN O �Y�[Z]\_^=`badce!f]g �WP Q �W/ � + � '  Jih
V �W/  4 � (3)

with h being a Lagrangian multiplier to balance registration ac-
curacy and transformation smoothness.
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Solving this minimization problem (3), can be done by find-
ing the zero point of its first order derivative

h
H
H /
V �S/  � 7 H

H / P8�S/
� + � '  �F (4)

As we study synthetically generated transformations only, the
study image as well as the reference image will have the same
intensity distribution. Hence, we use the simplest case of a sim-
ilarity measure1, the so-called identity relationship [15], which
yields the sum of squared intensity differences as a cost func-
tion:

PEQR�W/ � + � '  �Y�
�� ���  ' � �! �7 + �S/9� �! 4 � <�� �AF (5)

Its first order derivative is then used as the force � to drive the
registration

�,� � � /9� � � 2  � � � H
H / P8�W/

� + � '  ����� 	�) + �W/9� � � 2  4 �7 'b� �! � K +�
 e� 	 T ��� F (6)

Using fluid dynamics as the energy regularisation, and with

h
���[�

(4) finally reads��� K < J � � J��  K � K��  �� �B� � � 2  � 7 � � � � 1B� � � 2  � � (7)

with
�

and � being Lamé’s elasticity constants [16]. The term� K < J � � J��  K � K��  is the Navier-Stokes operator, modified to
account for non-mass-conserving deformations [17].

Solving the registration problem is done iteratively over a
time step of � 2 . In each step, (7) is solved for a constant time to
estimate the current velocity field � , which is then used to up-
date the displacement field 1 by a time integration step derived
from (2):

1B� � � 2���� ;  �Y� 1B� � � 2��  J� 2  �L� � � 2��  E7 K 16� � � 2��  �L� � � 2��  � F (8)

To solve the registration problem, the continuous image do-
main

�
is discretized by using a grid constant  "! �,�  "$#

�-�&%� �Y�(') * � 7 �,+-/.0 1324 ������ . � 0 �
1 � �����C� F F F �  7 �65 78 F (9)

With 9 ���  � , the discretization of a vector field � on the
domain

%� � ���
corresponds to a 9 -dimensional vector � 3 � � ; � F�F F � �:�; ; � e . Given < ��� . J 0  J

1  < � . � 0 �
1
 " %� ,

the < th component ��= is also denoted as � �ST >_T ? .
Since we work on a discretized image domain, the transfor-

mation / is not preserving topology, per se. Therefore, we have
to keep the minimal value of the Jacobian of transformation /
[18] @ �W/  ��� `ba c	 f �BADCFE �HG 7 K 16� � � 2  4 � (10)I

For a detailed discussion of similarity measures see [11], [12], [13], [14]

from falling below a certain threshold. Christensen et al. [6]
achieve this by re-gridding: Every time

@ �W/  drops below the
heuristic value 0.5, the global deformation T is updated / ���
/-@ /J� by using the current transformation /K� �Y� � 7 16� � � 2  ,
and a new template L+ is generated by applying the current trans-
formation L+ ��� + �S/  . The displacement field u and time t are
set zero, and for further registration the new template L+ is used.

To avoid local minima and to speed up computation, a coarse-
to-fine multi-resolution scheme can be employed voluntarily:
We start with a coarse discretization of the image domain

�
,

introduced by a low grid constant  . If registration is achieved
at a certain grid level, the grid constant will be increased. The
obtained transformation is tri-linearly interpolated on the higher
resolution, thus assuming that the minimal value of the transfor-
mation’s Jacobian is still positive. The multi-resolution iteration
is stopped when the grind constant  is as large as the finite
resolution of the input images. For implementation details of
the registration algorithm, please refer to the software we made
available online under the terms of the GNU public license [19].

To compare the results of registration approaches, finally a
measure for registration accuracy has to be introduced. Since the
synthetical transformation, used to deform the images, usually
will not minimize the energy regularisation term, comparing this
transformation to the obtained registration transformation is not
an option. Instead, we propose an accuracy measure based on
the relative value of the cost function: With identity mapping/ 3 � �! �Y� �NM � " � , the accuracy of registration achieved by
the transformation /9� �! �,�-�.�

is defined as:O
reg �S/  ��� P�QR�S/ 3 � + � '  

P Q �S/ � + � '  F (11)

Given a perfect registration, the accuracy becomes infinite. For
interpolation of the image date during registration introduces er-
rors in the image data, we do not expect infinite registration ac-
curacy in our experiments.

III. APPROACHES FOR SOLVING THE LINEAR PDE

The time consuming step of this registration algorithm, and
therefore its core problem, is the solution of PDE (7) for a con-
stant time and force. We will now discuss different approaches
for its solution on the discretized coordinate domain

%�
, namely

(A): successive over-relaxation; (B): successive over-relaxation
with adaptive update; (C): the minimal residual algorithm; and
(D): Convolution Filters. We will compare the approaches in
terms of speed, memory usage, and accuracy of the resulting
registration.

A. Successive Over-Relaxation (SOR)

Discretizing (7), using finite differences [20], yields a linear
system P

� � � � P " � � :6Q � : � � � � " � � : F (12)

One method to solve (12) is successive over-relaxation (SOR)
[21], [22], [23], [20]. Splitting

O � �HRDS�T T  D" ��� :UQ � : into a
diagonal matrix

P$V
, a lower left matrix

P"W
, and an upper right

one
P S , P � PXV

J
PNW
J
P SZY (13)
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we obtain the iteration rule of SOR, with the iteration index �
and the over-relaxation factor � :

� � W � ; � ��� � � W � J � P ; ;V�� � 7 PNW � � W � ; �
7 ��G J P S  � � W ��� F (14)

In each iteration, the component � = of vector field � is updated
with a residual� � W � ; �= ��� �R = = � � =[7 � W= 7 = ; ;�>	� ; R = T > � �

W � ; �>
7

:�>	� = � ; R = T > � �
W �> � F (15)

Note, that in the term 
 = ; ;>	� ; R = T >G� � W � ; �> 0�� < , i.e. to evaluate� � W � ; �= , already updated elements of � are used.
The sparse structure of

P
yields that one update of the dis-

cretized velocity field � needs an order of � 9 floating point
operations ( �b���Z9  FLOPs) [19]. The update scheme does not
require additional memory cells for the iteration process.

B. Successive Over-Relaxation with Adaptive Update

Non-rigid registration is usually preceded by rigid registra-
tion. Thus, we only expect differences between the images in
certain regions of interest. Since we do a coarse-to-fine multi-
resolution processing, large differences are roughly registered at
coarser levels, yet. Hence, large regions of the images may have
little (if any) influence on the solution of PDE (7).

By deriving the residuum � �ST >_T ? � � = (15), in each iteration��WT >�T ? depends only on the 19 values with indices � "�� :

� ��� ') * +- .0 1 24 � +- .�� �0 1 24 � +- .0 � �1 24 � +- .01 � � 24 �

+- .�� �0 � �1 24 � +- .0 � �1
� � 24 � +- .�� �01 � � 24 5 78 F (16)

Therefore, it makes sense to update ���WT >�T ? only if at least one
residuum � ��� f�� � is larger then a threshold value L� evaluated in
the preceding iteration step:

L� ����� � < � �� � = � � S �"!$#S �%!'&)(�# � ;=+* , 2.-0/ �21 .43 / �
(17)

with � ��� �5 �76 �98;: � � � �ST >_T ? � < � (18)

To obtain all residues � �ST >_T ? initially, this threshold L� is set
to zero during the first iteration. Later on, the threshold is set
to the average over the square norms � of the residual vectors
combined with a term which involves the evolution of the re-
spective residuum and another term to decrease the threshold
in subsequent iterations, generally. With an increasing number

of iterations, the solution search space thus increases and con-
verges to the search space of the original SOR. Hence, if SOR
is convergent, then SOR with adaptive update (SORA) will also
converge. This update scheme (SORA) can also be seen as a
variant of the Gauss-Southwell-Relaxation [24].

The number of operations, needed for one update of the ve-
locity field, depends on the input data, but is well below the
O(66n) FLOPs that are needed for the unmodified SOR. Addi-
tional storage �b��9  is required for residues and update markers.

C. The Minimum Residual Algorithm (MINRES)

The solution of the linear system (12) can also be regarded as
the minimum of: <

�S�  ���
�� � P � 7 �  < F (19)

If A is a symmetric matrix, though not necessarily a positive
definite one, the minimum residual algorithm2 [21], as a variant
of the conjugate gradient method, can be employed to solve this
minimization problem.

In the linear system (12), the diagonal elements of A areR �ST � �.�
, thus the system can be considered as treated with a

Jacobi pre-conditioner. For the simple structure, a multiplica-
tion with A is achieved with only �b�>= � 9  FLOPs [19]. Hence,
solving (12) by using MINRES seems feasible. In summary, this
algorithm requires �b� �C�2? 9  FLOPs per iteration [19]. No stor-
age for A is required, but the algorithm requires �b��9  storage
cells for temporary vectors. Employing an adaptive update, sim-
ilar to the one given for SORA, would break the search strategy
of MINRES, which depends on orthogonal search directions.
Thus, an adaptive update was not considered.

D. Convolution filters

Bro-Nielsen et al. [10] suggested the usage of convolution
filters for solving (7). A linear operator comprising the form of
(7) is given as: @

��� � K < J � � J��  K � K��  ?F (20)

With a filter width parameter
�
, the filter components A " �=� Q � ,

as given by Bro-Nielsen [25], and B S�T T_T � � � SV � TV � �V  e 
 � � 3 � 2 " 7 � � � �DCFE
, the solution of PDE (7) at � " %� can be calculated

by convoluting the impulse response of operator

@
with the input

force � :
�B� �! �

V�S�T T_T �G� ; V A �GBS�T T_T �  � �,� �D7 BS�T T_T �  �F (21)

The filter components A " ��� Q � can be pre-calculated. For
each location (r,s,t) in (21) a product with a H $ H matrix and the
sum of two 3D vectors have to be calculated. The computional
cost for solving (7) on the discretized grid

%�
is �b� �JI � � � J �  � 9  FLOPs, therefore. Additional storage space is only needed for

the filter components; it can be neglected, because the filterK
The usage of the standard conjugated gradient method (CG) is discouraged;

without any boundary conditions, A is singular and thus not positive definite.
Even with boundary conditions specified, for large n A becomes ill conditioned,
which will lead to an instable operation of CG.
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width is small compared to the image size. A given filter width
restricts the maximum length of the deformation during a trans-
formation step in the registration algorithm. For a filter width
smaller than the largest image dimension, it is not possible to
obtain an accurate solution of PDE (7). Thus, a multi-resolution
approach for solving the registration problem is mandatory to
accommodate large deformations [10].

We now compare approaches A-D w.r.t, the respective com-
putional costs, as obtained above (Table I).

[Insert Table I approximately here]
MINRES needs nearly twice as many FLOPs per iteration as
SOR does. Since CG-based methods are known for their fast
convergence, MINRES may perform better. The cost of CONV
increases very quickly with a growing filter width.

To get a first impression of the performance ratio between
CONV and iterative methods, we additionally summarize the
number of iterations, with which the theoretical computional
cost of these methods exceed the ones of the convolution based
solver (Table II), for different filter sizes.

[Insert Table II approximately here]
These numbers indicate, that using CONV with large filter sizes
does not offer an advantage compared to iterative solvers, if the
number of iterations can somehow be restricted with these meth-
ods. On the other hand, we have to consider which filter sizes
are sufficient to solve (7) with an adequate precision to achieve
a good registration.

IV. EXPERIMENTS AND RESULTS

Convergence properties of solvers for systems of linear equa-
tions, such as SOR, SORA and MINRES, are well known from
literature (e.g. [20]). Nevertheless, we first ran a test to deter-
mine the performance of the iteration methods alone, i.e. out-
side the context of the registration problem, since the actual con-
vergence properties are also problem specific. Discrete random
force fields f on a grid of

� � I $�� � I $�� � I
voxels were gener-

ated, and (7) was solved. Every time the relative residuum of the
solution dropped below a certain threshold during the iteration,
time and number of iterations were measured. If matrix A is a
symmetric, positive definite, tridiagonal, or block wise tridiag-
onal matrix, the theoretically optimal relaxation factor � can be
approximated by: � � �

�
J��

� 7 � < (22)

with � being the spectral radius of
P ; ;V �

P"W
J
P S  [20]. Since

it is difficult to calculate the spectral radius, we used relaxation
factors of 0.8, 1.0,

� F � , and 1.8. A dynamic adaption scheme,
known as Chebyshev acceleration [20], was also examined, but
did not offer any improvement.

The top chart of Fig. 1 shows3 that the minimal residual
method (MINRES) requires least iterations to achieve a given
relative residuum.

[Insert Fig.1 approximately here]

�
Relaxation factors of 0.8 and 1.8 did not yield superior results over factors

1.0 and 1.4 and were omitted from figures.

In terms of computation time, (using a 450Mhz Pentium II based
workstation), however, successive over-relaxation was faster
(see bottom chart of Fig. 1 ).

In the generated fields, forces are distributed evenly over the
domain, therefore the adaptive update showed a slight advan-
tage. We expect better results on realistic data, because forces
will typically be localized. An over-relaxation factor of 1.0
achieved best results for the relaxation based methods, and it
was used in the following registration experiments. On the basis
of this experiment, we expect SOR or SORA to perform better
than MINRES.

The same test was run with convolution filters. Especially
by using small filter widths, results for the solution of PDE (7),
were not satisfactory (Table III).

[insert table III approximately here]
This conforms with the statement that CONV does not yield a
proper solution of (7), if the filter width is much below the image
dimensions. Filters of higher order were not tested, since their
high computional costs do not offer an advantage compared to
the iterative methods.

For our second experiment, the performance of the different
methods was tested in the framework of the registration algo-
rithm by using synthetic images of size  � $  � $  � (see also
Fig. 2).

[Insert Fig. 2 approximately here]
Twenty reference images were generated, deforming the study
with a smooth random deformation field, and the study was reg-
istered to these references. We choose

� � � �.� F � and the
multi-resolution start grid constant  � �  .

[Insert Table IV approximately here]
Results in Table IV demonstrate, that it is not necessary to

solve (7) with a high accuracy. A limit of 10 iterations only,
yields a registration quality nearly as good as any higher number
of iterations.

[Insert Table V approximately here]
For convolution filters, a minimum filter width of 5 is necessary
to achieve results which are similar to those of the other meth-
ods (see Tab III and Fig. 2). The bad registration results for a
filter width of 3, again show that a small filter is not sufficient
to solve (7) with an adequate accuracy. The number of itera-
tions in the iterative methods can be reduced significantly, i.e. it
is not necessary to evaluate the velocity field � accurately from
the deforming force � in each iteration step. Thus the computa-
tional cost of CONV is similar to those methods, and any speed
advantage vanishes. Only with a filter width of 3 convolution
filters offers an advantage, in terms of speed but not in terms of
accuracy. These results correspond to the ratio of computational
costs, as compiled in Table II.

Now, we were interested in testing how algorithms scale on
the image resolution, using the optimal parameters as deter-
mined in the preceding experiment. For the iteration based
methods, we set the maximum number of iterations to 10, or
stopped if the relative residuum dropped below 0.01. Convo-
lution filters were applied with a filter width of 5. Although
methods for solving (7) need �b��9  FLOPs, the time needed to
achieve registration of synthetic images increased at a lower rate
than the number of voxels (see Fig. 3).

[Insert Fig. 3 approximately here].
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As another conclusion, SOR and SORA scale better than
MINRES and CONV. The super-scalar speed increase for small
resolutions (i.e. 32x32x32) is a consequence of caching [26].
SORA proved to be the fastest method.

Finally, we explored the performance of registering high-
resolution medical image data. Acceptable results of the reg-
istration of pairs of

� = � $ � = �&$ ��� � MR image of the head
were achieved in approximately 3 hours.

V. CONCLUSION

We compared two iterative methods successive over-
relaxation (SOR), and the minimal residuum algorithm (MIN-
RES), and a direct approach convolution filters (CONV), as
methods for the solution of the core problem of non-rigid regis-
tration, based on fluid dynamics. In terms of computional costs,
we found that MINRES required fewer iterations to solve (7)
with a given accuracy, but SOR required less memory cells as
well as less time to achieve the same result, and is thus consid-
ered superior. Numerical experiments on synthetic data demon-
strated the possibility of restricting the numbers of iterations
drastically, without a significant loss of accuracy of the regis-
tration result. With this optimization, SOR outperformed con-
volution filters (CONV) in terms of speed while the registration
accuracy maintains. Furthermore, we were able to speedup SOR
by introducing an adaptive update scheme (SORA). In summary,
SORA proved to be the best approach to solve (7).

Although our implementation is neither fully optimized for
workstation architectures nor parallelized we were able to obtain
results for MRI volumetric data of high resolution, in approxi-
mately three hours of computation time. By optimizing our im-
plementation ( e.g. by improving the use of the memory cache
hierarchies of the processor and by introducing parallelization),
a further speedup is expected.
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TABLE II

RATIO OF COST OF ITERATIVE METHODS W.R.T. CONV

CONV � CONV � CONV � CONV �

SOR 8 35 94 199
MINRES 5 20 53 113

Number of iterations at which the computional cost of the it-
erative methods exceeds the cost of convolution filters. If the
number of iterations to solve (7) can be restricted, using CONV
with high filter order does not offer an advantage over the itera-
tive methods.
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Fig. 1. MINRES shows the best convergence properties in term of iteration
count (top). However, in terms of execution time, SOR and SORA perform best
(below), because their cost per iteration is well below that of MINRES.
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Fig. 3. Scaling of the execution times with image size: All methods show a
sub-proportional time increase w.r.t. images of size ��������������� . SORA scales
best.
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TABLE I

COMPUTIONAL COST TO SOLVE (7)

SOR
iteration

SORAU
iteration

MINRES
iteration CONV � CONV � CONV � CONV ��b� �Z9  � �b���Z9  �b� �C�2? 9  �b� � I Z9  O(2250n) O(6174n) O(13122n)

The individual cost of iterative methods is given per iteration. Subscripts of CONV denote the filter width. Note the cost of
MINRES is nearly doubled w.r.t. SOR, and the cost of CONV increases rapidly with larger filter widths.

TABLE III

TIME AND ACCURACY FOR SOLUTION OF PDE (7) USING CONV

3 5 7 9

time (s)
� H F � � � F �  �,�C� F � � � F H  H � � F = � � F =  ? � H F � � � F �  

res
��������� �

res
��� � 3 � � F � � � � F ���  � F � � � � F � �  � F � � � � F � ?  � F H � � � F � H  

Average registration time (variance) and average relative residuum (variance) respectively, for solution of PDE (7) for 20 randomly
generated

� � Ib$�� � Ib$ � � I
force fields using convolution filters (CONV) w.r.t. filter width. Note that CONV is not able to solve

(7) accurately using small filter widths.

TABLE IV

REGISTRATION OF SYNTHETIC IMAGES (ITERATIVE METHODS)

MINRES SOR SORA	 	 	 	 	 	 	 	max
iterations
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A registration of synthetic 3D-images of size  � $  � $  � was performed. The respective registration time (upper row in cell),
and the registration accuracy

O
reg (lower row) were averaged over 20 registration experiments (variance in parenthesis). The best

registration times per maximal number of iterations are emphasized using bold fonts. Registration accuracy using only 10 iterations
to solve (7) is nearly as good as using more iterations. With a limited number of iterations, SORA performs best.

TABLE V

REGISTRATION OF SYNTHETIC IMAGES (CONVOLUTION FILTERS)

CONV � CONV � CONV � CONV �
time (min) � F � � � F =  ��� F  � � F =  � I F = � I F �   � F H � � H F ?  O

reg = F � � � F ?  �R� F � � � F �  �C� F � � � F =  �,� F H � � F �  
Registration of synthetic images of size  � $  � $  � using convolution filters was performed. The respective registration times
(upper row in cell) and registration accuracy (lower row) were averaged over 20 registration experiments. Note the low accuracy
obtained for CONV � .
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Fig. 2. Registration of a synthetic study (top-left) and an example reference (top-right). Results are shown in the middle row, and the obtained deformations in the
lower row. Iterative methods were applied using a limit of 10 iterations and 
�� �

�
��

. Note the registration error when using a small filter width (CONV � ).


