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Monitoring Structural Change in the Brain:
Application to Neurodegeneration

Marc Tittgemeyer*, Gert Wollny, and Frithjof Kruggel

Abstract— Magnetic resonance imaging (MRI) is used in
clinical routine to map the brain’s morphology. Structural
changes due to brain growth, aging, surgical intervention
or pathological processes may be detected by image regis-
tration of time-series imaging data. To monitor structural
change a three step approach is pursued here: (1) rigid
registration and intensity matching of an initial (reference)
and follow-up MRI scans, (2) a non-rigid registration of the
scans, and (3) the segmentation of the resulting displacement
field. Cros-correlation is used as a similarity measure for
rigid registration. Non-rigid registration is based on a fluid
dynamical model. The resulting displacement fields are usu-
ally large and, therefore, hard to interpret. For a simplified
but sufficient description of such vector fields, contraction
mapping is proposed to detect vector field singularities. This
enables the detection and analysis of singularities of any or-
der as critical points which reflect the topology of the vector
field. An application demonstrates how this method helps to
increase the understanding of pathological processes in the
brain.

Keywords— non-rigid registration, critical points, neu-
rodegeneration, Alzheimer dementia

I. I NTRODUCTION

IMAGE registration is an important component in
many neuroimaging applications. One of its basic

objectives is to allow the characterisation of the mor-
phology of different subject’s brains. Another is to
monitor intra-subject variations. In our application,
changes of brain structure due to brain growth, aging,
surgical intervention, or pathological processes are
monitored by time-series examinations using mag-
netic resonance imaging (MRI). MR images are given
as 3D matrices of intensity values. Beyond usual
comparison of the image data, which is still the gold
standard in clinical neuroscience, structural changes
with time may be detected by non-linear registration
of the imaged brain. The result of the registration al-
gorithm is a vector field which maps one image onto
another. This displacement field reflects the structural
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Fig. 1. Classification criteria for critical points (after [1]).λi

denote the eigenvalues of the phase portrait to a critical point.

change that acted on the brain. Unfortunately, such
vector fields are usually high-dimensional, large, and,
therefore, hard to interpret.

High-dimensional vector fields are a result of ob-
served measurements or simulated processes in a va-
riety of application domains (e.g., geophysics, mete-
orology, or medicine). The characterisation of vector
fields from registration of medical image sequences
was stimulated by Thirion and Calmon [26]. Con-
secutive methods basically focus to segment areas of
changing brain volume through the Jacobian [9, 24],
or to detect growth pattern by tensor maps [27]. In
order to improve the understanding of underlying dy-
namics in our measurement, we propose to charac-
terise the vector fields by their critical points.

The most prominent critical points are attractors,
repellors and vortices (rotation centers). Abraham
and Shaw [1] introduced a concise classification
scheme for critical points (Fig. 1) based on their
phase portrait. In general, critical points characterise
a high-dimensional vector field as a sparse set of fea-
tures that are sufficient to understand the behaviour
of the simulated physical process and its topology.

The detection and visualisation of critical points
within vector fields is still an active research area
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in which rather sophisticated mathematical methods
have been employed [13]. Topological methods, as
introduced by Helman and Hesselink [14] are estab-
lished. These methods decompose a vector fields in
different global regions of interest, but are usually
based on local linear approximations of the Jacobian.
Higher-order approximations yield different decom-
positions [25]. Philippou and Strickland [21] intro-
duced a geometrical method that describes critical
points at the intersection of lines tangent with the vec-
tor orientation (or at the intersection of planes orthog-
onal to the vectors). Other widely employed methods
are based on the Poincaré-Hopf index theorem (e.g.,
[11]).

Due to the finite spatial resolution of the images,
the displacement field is given on a discrete grid.
Since, for example, growth or atrophying processes
take place in finite sub-compartments of the brain,
representing critical points by point sources is an
over-simplification. Most conventional methods fail,
therefore, to detect critical points within medical vec-
tor fields. Thus, in our application, critical points are
not regarded as infinitesimally small.

We here propose a novel method that is based on
the contraction mapping theorem [17]. For an appli-
cation to a patient suffering from neuro-degeneration
(Alzheimer’s disease) we will illustrate how non-
rigid registration and critical points analysis may help
to understand the disease process.

II. I MAGE REGISTRATION

Image registration is usually achieved by apply-
ing a vector field transformation to one image in or-
der to match another (reference) image with respect
to a given cost function describing the image differ-
ences [18]. In practice, these transformations must
accommodate both very complex and large deforma-
tions. The mathematical framework to carry out such
a task with respect to the discipline of computational
anatomy has been compiled by Grenander and Miller
[12].

To correct for positioning and global size differ-
ences between reference and follow-up images, we
first apply a rigid registration algorithm. Then, we
correct for intensity scaling artifacts in the time-series
examinations. Implementations for both steps were
obtained from the SimBio bio-numerical simulation
environment [16].

The high dimensional transformations involved in

non-rigid registration generally make the problem
of matching images ill-conditioned (i.e., many pos-
sible solutions exist), so that additional constraints
are needed to obtain a physically plausible result
[2, 3, 10, 19]. Recently, Musse et al. [20] as well
as Christensen and Johnson [7] also address the topo-
logical issues involved with small and large-distance
non-linear transformations.

Bio-mechanically plausible transformations are
constrained to be consistent with the physical proper-
ties of deformable elastic solids. To understand how
elastic image matching works, consider the deform-
ing image to be embedded in a 3D elastic medium.
The medium is subjected to distributed internal forces
which reconfigure it and lead the image to match a
target. In linear elastic media, the displacement vec-
tor field ~u(~x) resulting from internal driving forces
~F (~x) (called body forces) obeys the Navier-Stokes
equilibrium equations for linear elasticity:

µ∇2~u + (λ + µ)~∇(~∇ · ~u) = ~F (~u), ∀ ~x ∈ Rn. (1)

HereRn is the discrete lattice representation of the
image;~∇ · ~u = ∂uj

∑
/∂xj is the cubical dilatation

of the medium;∇2 is the Lagrangian operator, and
Lamé’s coefficientsλ andµ refer to the elastic prop-
erties of the medium:λ controls the rate of growth
or shrinkage of a local region, whereasµ controls the
shearing between adjacent regions of the image.

However, the assumption of linear elasticity con-
fines the registration to be globally smooth and there-
fore to accommodate only small deformations. In
an extension to his initial work [5], Christensen [6]
described a registration approach in which a viscous
fluid model was used to control the deformation.

For viscous fluids, the force~F (~u) is proportional
to the time rate of change in displacement. The PDE
describing the fluid transformation of the template is
given by (refer to Christensen et al. [8] for a detailed
derivation):

∇2~v + (λ + µ)~∇(~∇ · ~v) = ~F (~u). (2)

Here, ~v is the instantaneous velocity of the dis-
placement field~u. It is related to its displacement
~u by

~v(~x, t) =
∂~u(~x, t)

∂t
+ ~v(~x, t)T ~∇~u(~x, t). (3)
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The∇2~v term in (2) is the viscous term of the PDE.
This term constrains the velocity of the neighbouring
particles of the displacement field to vary smoothly.

Due to attenuation in viscous fluids, internal forces
in this model disappear with time. Thus, the desired
deformation can be fully achieved even if large defor-
mations are required. Unfortunately, the original im-
plementation is demanding with respect to its com-
putational cost. Wollny and Kruggel [28] therefore
proposed a fast algorithm to carry out non-rigid reg-
istration based on fluid dynamical modelling.

III. T HE CONCEPT OFCRITICAL POINTS

Considering a vector field~u : Ω → R3 for any
compact domainΩ ⊆ R3 and the set

Uε(~x
′) := {~x| ‖ ~x− ~x′ ‖< ε, ~x ∈ Ω}, (4)

for anyε > 0, ε ∈ R and a~x′ ∈ Ω, thenUε is called
theε-environmentof ~x′.

The Taylor series expansion of~u(~x) around the
point~x′ yields:

~u(~x) =
∂ui

∂xj

∣∣∣∣
~x′

(~x− ~x′) + ~u(~x′) + O(~x).

By taking into account only its linear terms, and
with the substitution~A := ∂ui

∂xj

∣∣
~x′ , ~A ∈ R3×3, we ob-

tain

~u(~x) = ~A(~x− ~x′) + ~u(~x′). (5)

Thus, we can now define [cf. 21]:
Definition 1: A critical point~xcp is an equilibrium

point in the vector field topology where~u(~xcp) = 0,
while there exists anε > 0, ε ∈ R, so that~u(~x) 6=
0 ∀ ~x ∈ Uε(~xcp)\{~xcp}.

Proposition 1:Within the vicinity of a critical
point~xcp, the vector field~u(~x), as outlined in (5), can
be approximated by

~u(~x) = ~A(~x− ~xcp),

where the matrix~A is called thephase portraitof the
critical point~xcp.

Since a first-order Taylor series would have a lim-
ited scope in modelling~u(~x) adequately (i.e., the in-
fluence of critical point~xcp would decay with distance
∆~x = ~x−~xcp) accuracy in modelling can be increased

by introducing the attenuation factor1/‖ ~x− ~xcp ‖2.
Consequently, the approximation of~u(~x) now reads

~u(~x) =
1

‖ ~x− ~xcp ‖2
~A(~x− ~xcp). (6)

A critical point may be classified with respect to
the eigenvalues of~A (as proposed by Abraham and
Shaw [1]): we distinguish attractors, repellors, saddle
points, and rotation centers (see Fig. 1).

For our intended application, namely to interpret
morphological changes of the brain, attractors and re-
pellors may describe areas of matter loss and growth;
respectively, saddle points may characterise configu-
rations at barriers or membranes, and rotation centers
may indicate local tissue shearing.

IV. ESTIMATION OF CRITICAL POINTS

When registering morphological changes, we ob-
tain vector fields (the displacements) that are not
given on a continuous domainΩ, but on its discreti-
sationΩ̂ which reflects the finite resolution of the im-
ages. As discussed in the introduction, a critical point
in our application domain is not infinitesimally small,
but merely represents a zone to which the vector field
is attracted to or repelled from, for example.

In estimating critical points we rely on the contrac-
tion mapping theorem [e.g., 17]. From its mathemat-
ical foundation, contraction mapping is confined to
detect attractors or repellors, only. If a saddle point is
unbalanced (i.e. the inflow of matter is not equal to
the outflow), or if a rotation center has additionally an
attracting or repelling component, then we are able to
detect this critical points by contraction mapping.

A. Estimation algorithm

The algorithm to estimate attractors and repellors
can be subdivided in three steps: (1) cumulation and
(2) clustering of attracting/repelling areas followed
by (3) a phase portrait estimation to carry out a classi-
fication. In the following, with respect to an attractor
the transformationT : Ω → Ω will be applied, so that

~T (~x) = ~x + ~u(~x). (7)

~T is achieved by non-rigid registration (Sec. II) and
resides in an Euclidean reference frame. Accord-
ingly, repellors can be attributed to

~Tinv(~x) = ~x− ~u(~x). (8)
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A.1 Cumulation

To find fix points~a in the displacement field~u, we
define a counterC on the discretised domain̂Ω. In-
troducing a thresholdt, and

Ω̂start :=
{
~x| ‖ ~u(~x) ‖> t, t > 0, ~x ∈ Ω̂

}
, (9)

yields a set of starting points, that are linked to the
attraction areasΘ(~a) ⊃ {~a} (i.e., an attraction area
will contain more then just one point). Now consider
the sequences

[
T k(~x)

]
k=0,1,...

. When reaching the

condition~u(T k(~x)) < t, we increment the counter
C(T k(~x)). The requirement fork > kmax(= 2000)
obviates oscillations between points of accumula-
tions. The distribution of the counter valuesC(~x) re-
flects the distribution of fix points of the vector field
~u, after an iteration over all~x ∈ Ω̂start.

A.2 Clustering

With two sequences
[
T k(~x1)

]
k=0,1,...

and[
T l(~x2)

]
l=0,1,...

we will converge to the same
fix point~a if the following assumption is fulfilled

~u(T k(~x1)) < t ∧
~u(T l(~x2)) < t →

∥∥T k(~x1)− T l(~x2)
∥∥ < α (10)

for a certain valueα > 0, α ∈ R. The value ofα
should be chosen according to resolution of the grid
Ω̂. A suitable choice is0.5×voxel size. The threshold
valuet is set to the resolution of the grid (1 mm in our
case).

Attracting points are obtained by clustering the
counterC: First, find a seed point~s ∈ Ω̂ with
C(~s) > t, and create a point size cumulation area
Θ~s which then accumulates by adding neighbouring
grid points~x as long asC(~x) > t. After Θ~s has estab-
lished its final size, its center of gravity is calculated;
weighted with the counter valuesC(~x), ~x ∈ Θ~s and
then used as location of a critical point:

~xcp :=

∑
~x∈Θ~s

C(~x)~x∑
~x∈Θ~s

C(~x)
. (11)

Finally, at each~x ∈ Θ~s the counter is setC(~x) := 0
to ensure that the same points~x are not taken into
account for further clustering. The procedure is re-
peated untilC(~x) ≤ t ∀ ~x ∈ Ω̂.

Fig. 2. Axial slice 90 (top row) and coronal slice 140 (bottom
row) from200× 256× 200 voxel MR data sets taken 3 months
(left panel) and 15 months (middle panel) after the patient’s ini-
tial diagnostic findings. The right panel shows the difference
between both images.

A.3 Phase Portrait Estimation and Classification

Since we are seeking for an approximation of the
vector field~u(~x) in the environment of a critical point
~xcp, we may substitute∆~x := ~x−~xcp in (6) and yield:

‖ ∆~x ‖2 ~u(~xcp + ∆~x) = ~A(∆~x). (12)

Accounting for a certain environment around~xcp,
with (12) we obtain an over-determined system of
linear equations [21] which can be solved by using
Householder transformations [23]. Since the phase
portrait A is a 3 × 3 matrix, its eigenvalues can be
calculated easily by solving the characteristic equa-
tion

det( ~A− λ~I) = 0

using Cardan’s formula [4]. Critical points are classi-
fied by examining their eigenvalues (see Fig. 1).

V. A PPLICATION—V ISUALISATION OF SHAPE

CHANGE

We applied our algorithm to magnetic resonance
(MR) images of a patient suffering from a neurode-
generative disease (Alzheimer’s disease). Analysing
the pattern of tissue loss is important for a better un-
derstanding of the pathological process induced by
the disease.

A patient was scanned twice within 12 months
(Fig. 2). Both datasets were registered by the fluid
dynamic, non-rigid approach described in Section II.
We obtained a displacement vector at each point of
the reference image which corresponds to the shift
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Fig. 3. Shape difference of a patient’s ventricular system between two examination time points (see text). Colour indicates the
orientation and magnitude of shape difference; arrows indicate the displacements. Note the overall enlargement of the system
which is a consequence of tissue loss (atrophy) of the surrounding brain.

Fig. 4. Pattern of shape changes of a patient’s brain between two examination time points. Morphological changes are colour
coded; red and blue indicate inward and outward direction, respectively, and intensity corresponds to the magnitude of shape
change perpendicular to the surface of the brain. The major displacement lines (arrows) depict the deformation lines. The critical
point (repellor) within the frontal CSF compartment indicates a virtual flow in fronto-occipital direction.
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Fig. 5. View of an axial slice (taken from Fig. 4) with major displacement lines and critical points of high magnitude. A repellor
(green object) in the frontal cerebrospinal fluid (CSF) and the displacement lines depict a virtual flow in occipital direction. Saddle
points of type II (cf. Fig. 1) with strong repelling properties were found within the occipital CSF, and reveal a retraction of the
brain. Small attractors (red) some with rotation properties (red-magenta) presumably correspond to areas of a regionally more
profound matter loss.

of tissue during the time interval. Fig. 3 serves
as a first example to visualise such morphological
change. The ventricular system (the low-intense cav-
ities within the brain in Fig. 2) was segmented from
the brain. The spatial pattern of shape change was
visualized as follows: For each point on the ventric-
ular surface, the displacement vector is decomposed
into its normal and tangential components. Inward-
pointing normals are coded in red, outward-pointing
in blue; colour intensity reflects its magnitude. The
scale is given in mm. The displacement vectors are
shown as arrows. It is interesting to note that the ven-
tricles are clearly enlarged, most notably in a superior
direction, which which indicates a more profound tis-
sue loss in the supra-ventricular compartment.

We extracted (in total 110) critical points from the
displacement field. To represent their properties, a
colour scheme was implemented. Green indicates
repelling (red: attracting) properties, blue a rotation
component. Different types of saddle points may be
distinguished by mixing the respective colours.

The set of critical points is dominated by a strong

repellor located in the pre-frontal CSF compartment
(Fig. 4), and by several saddle points with strong re-
pelling properties within the occipital CSF compart-
ment (Fig. 5). A focus of matter loss is in the frontal
lobes, leading to an increase of the CSF component
close to the frontal pole. Displacement stream lines
(Figs. 4 and 5) map the ”flow” of tissue along the mid-
line structures (as a correlate to global atrophy) and
reveal a retraction of the brain in the frontal-occipital
direction. The occipital saddle point (Fig. 5) can be
interpreted as a backward shift of the brain, while
pushing CSF in the repelling direction. As could be
deduced by Fig. 4, the strongest deformations occur
in the posterior portions of the first and second frontal
gyrus on both hemispheres.

VI. CONCLUSION

We proposed to monitor structural changes in the
brain by non-rigid registration of time-series of MR
images. To describe the resulting displacement fields
we focussed on its critical points. We introduced a
novel method for finding critical points in discrete
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vector fields, that is based on contraction mapping.
However, our method fails to detect some specific

critical points, such as rotation centers or balanced
saddle points. Here, local measures based on the Ja-
cobian [15] or global approaches such as those re-
cently introduced by Polthier and Preuß [22] will be
integrated with this method.

The advantage of conducting a biomedical analysis
over simple visual comparison as carried out in clini-
cal routine is obvious: the consequences of neurode-
generative disease are understood as a circumscribed
tissue loss leading to quantifiable deformations of the
brain structures.
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