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Abstract—Free-breathing image acquisition is desirable in
first-pass gadolinium- enhanced magnetic resonance imaging
(MRI), but the breathing movements hinder the direct automatic
analysis of the myocardial perfusion and qualitative readout by
visual tracking. Nonrigid registration can be used to compensate
for these movements but needs to deal with local contrast and
intensity changes with time. We propose an automatic registration
scheme that exploits the quasiperiodicity of free breathing to
decouple movement from intensity change. First, we identify and
register a subset of the images corresponding to the same phase
of the breathing cycle. This registration step deals with small
differences caused by movement but maintains the full range
of intensity change. The remaining images are then registered
to synthetic references that are created as a linear combination
of images belonging to the already registered subset. Because
of the quasiperiodic respiratory movement, the subset images
are distributed evenly over time and, therefore, the synthetic
references exhibit intensities similar to their corresponding un-
registered images. Thus, this second registration step needs to
account only for the movement. Validation experiments were
performed on data obtained from six patients, three slices per
patient, and the automatically obtained perfusion profiles were
compared with profiles obtained by manually segmenting the
myocardium. The results show that our automatic approach
is well suited to compensate for the free-breathing movement
and that it achieves a significant improvement in the average
Pearson correlation coefficient between manually and automati-
cally obtained perfusion profiles before (0.87± 0.18) and after
(0.96± 0.09) registration.

Index Terms—image registration, heart, myocardial perfusion.

I. INTRODUCTION

F IRST-PASS gadolinium-enhanced, myocardial perfusion
magnetic resonance imaging (MRI) is used to observe

and quantify blood supply to the different regions of the
myocardium. Ultimately, such observations can lead to the
diagnosis of coronary artery disease, which causes narrowing
of the coronary arteries leading to reduced blood supply to the
myocardium.

A typical imaging protocol includes some precontrast base-
line images, and the full cycle of contrast agent first enters the
right ventricle (RV), then the left ventricle (LV), and finally,
the agent perfuses the LV myocardium (Fig. 1). ECG-triggered
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(a) precontrast baseline (b) peak RV enhancement

(c) peak LV enhancement (d) peak myocardial enhancement

Figure 1. Images from a first-pass gadolinium-enhanced, myocardial perfu-
sion MRI study.

images are acquired to ensure that the acquisition always takes
place at the same contraction phase of the heart. Mistriggering
may occur, resulting in nonrigid deformations of the heart.

The image sequence is acquired over 60 seconds and
covers the perfusion from precontrast through the complete
first pass, which is too long for most patients to hold their
breath. Therefore, respiratory motion results in a nonrigid
misalignment of the sequence of images through the whole
acquisition. If the patient tries to hold the breath and fails,
normally a sudden deep gasp occurs and the imaging sequence
will not contain movement in the first part of the sequence
but a strong movement will be present in the second part.
If the patient is allowed to breathe freely, the respiratory
motion is shallower and more repetitive, almost periodic. In
both cases, proper alignment of the heart structures over the
whole sequence is desired to enable an automatic analysis. To
achieve such alignment, a matching procedure such as image
registration may be performed.

A. State of the art

The major challenge in correcting the motion problem in
contrast-enhanced perfusion imaging is that the local tissue
contrast in the image sequence changes locally with time,
especially in the region of interest, the left ventricular my-
ocardium. In addition, although the imaging protocol triggers
the acquisition at the same cardiac cycle phase, resulting
in a nearly rigid representation of the heart, the breathing
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movement occurs locally and the final sequence deforms
nonrigidly.

Various registration methods have been proposed to achieve
the alignment of myocardial perfusion heart images. For
brevity, we will mention only a few publications; for further
information, we point the reader to the references given in [1],
[2].

Some approaches rely on rigid registration only and employ
masks to restrict the registration to the area of the nearly
rigid motion of the heart [3]–[8]. To overcome the problem
of intensity change, one may optimize the similarity measures
drawn from information theory, e.g., (normalized) mutual
information (MI) [6], or (normalized) cross correlation (CC)
[3], [5]. Other options include the use of contour masks
obtained from gradient images and potential maps [7] or the
removal of the area of high intensity change by masking [8].

Another proposed approach [4] is to identify three feature
images as a vector base (baseline, peak RV enhancement,
peak LV enhancement) using independent component analysis
(ICA) of the intensity curve within the LV and RV. This vector
base is then used to create a reference image for each time step
by a weighted linear combination, and hopefully this image
exhibits a similar intensity distribution to the corresponding
original image to be registered. Image registration of the origi-
nal image to the composed reference image is then achieved by
a rigid transformation that minimizes CC. Because the motion
may also affect the ICA base images, this approach was later
extended to run the registration in two stages [2].

Because rigid registration alone does not account for the
nonrigid deformations of the heart and requires some form of
masking or feature extraction, other authors employ nonrigid
registration optimizing MI to overcome the intensity change,
e.g., [9]. MI is a global measure in the sense that it relies
on a consistent material-intensity mapping over the whole
image domain and does not account for the local intensity
change. Methods have been proposed to minimize the effects
of these local intensity variations on MI during registration
[10], [11]. However, these methods are tailored only to ac-
commodate slowly varying intensities that may result from
field inhomogeneities or tissue degeneration and not the strong
local changes resulting from a contrast agent passing through
the heart ventricles and the myocardium. In addition, the
evaluation of MI is quite expensive in computational terms.

To overcome these limitations, in our previous work [12],
we used a combination of normalized gradient fields [13]
and the sum of squared differences for registration. Because
here only image pairs in temporal succession were registered,
the registration method needed only to accommodate small
differences. The final alignment of the whole image series
to a common reference was achieved by accumulating the
transformations resulting from the paired registrations. In [14]
another serial registration scheme was proposed, that would
first identify a key frame as the common reference, and
then apply registration by optimizing CC between images in
succession.

However, it is important to note that in serial schemes
the accumulation of small registration errors may produce
considerable errors in the overall alignment for distant time

frames with respect to the common reference.

B. Our contribution

Most of the methods described in the previous section
are applied to data that are normally acquired during breath
holding, and only some of the proposed methods dealt with
data acquired during free breathing [8], [14], [15] or by
simulation to exhibit the motion found in free-breathing data
[2]. However, none of these methods was tailored specifically
to free-breathing data. When a patient breathes freely, the
breathing movement is quasiperiodic. As an example, Fig. 2
shows the movement of the manually tracked center of the LV
in one example sequence.
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Figure 2. Displacements of the manually obtained center of the LV in a free-
breathing acquisition. Note the quasiperiodicity of the breathing movement.
In this graph, horizontal corresponds to a movement in the direction septal
↔ lateral, and vertical to anterior ↔ inferior.

Our contribution exploits this quasiperiodicity to correct the
breathing movement. The registration scheme is divided in
three stages starting with the automatic selection of a global
reference, followed by the identification and registration of
a subset of images that correspond to the same respiratory
phase and, finally, the alignment of the rest of the images in
the sequence with respect to the synthetic reference images
of similar intensity distribution derived from the previously
aligned subset. Following this scheme, the two elements that
introduce differences in the sequence of images—the intensity
change and the movement—are decoupled as follows. In
the first registration step, only small movements have to be
corrected, but the registration method has to deal with strong
intensity changes. In the second registration step, the process
deals with images that have similar intensity distributions, but
the full amplitude of the breathing movement needs to be
accounted for. The general image alignment framework uses
nonrigid registration to account for deformations caused by
the respiratory movement, possible out-of-plane movement,
and to provide a fully automatic procedure that does not
require user interaction. The nonrigid registration scheme uses
a semilocal B-spline parametric transformation to optimize
the similarity metric based on either normalized gradient
fields or the sum of squared differences, or a combination
of both as proposed in [12]. Robustness and efficiency are
achieved using a multiresolution approach. This approach
was presented partially with preliminary results in [16]. In
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this article, we describe our completely automated method,
which we validated thoroughly using data from six patients
(18 sequences). We performed a number of experiments to
determine the registration parameters that produced the best
registration results. Intensity evolution curves from manually
tracked myocardial segments were used as the gold standard.

In the remainder of the paper, we first give a short overview
of the proposed nonrigid registration scheme, and describe our
choice of a normalized gradient fields (NGF)-based similarity
measure and our modifications. We then describe in detail our
approach to identifying and using the respiratory phase-aligned
image sequence to achieve motion correction. We then present
our experiments and results to validate our motion-correction
scheme by applying it to patient data. Finally, we discuss our
findings and point to future work.

II. METHODS

A. Proposal overview

Given an image domain Ω ⊂ Rd in the d-dimensional
Euclidean space, an intensity range V ⊂ R, an image at time
step i ∈ Θ is defined as mapping Ii := I(x, i) : Ω×Θ→ V.
Let us now consider an image sequence I := {Ii|i ∈ Θ}
obtained following a first-pass gadolinium MR acquisition
protocol over N time steps Θ := {1, 2, ..., N}. Given this
sequence, our goal is to obtain a motion-corrected sequence Î.
To correct for the existing motion, these images are registered
directly or indirectly to a certain global reference Iref. The
proposed registration scheme is divided in three stages as
outlined in Fig. 3. First, the global reference Iref for the
whole registration process and a subset of images I′ are
selected automatically to correspond to the same breathing
phase of the quasiperiodic motion. Second, this subsequence
I′ is registered nonrigidly to the reference Iref obtaining a
registered subset Î′. Because the images from the I′ sequence
correspond to the same breathing phase, they are almost
aligned, and nonrigid registration needs only to account for
small deformations. However, the images in I′ will exhibit
the full range of possible intensity change resulting from the
contrast agent passing through the heart. In the third step, the
remaining images Ii ∈ I\I′ are registered. To do so, for each
registration process of images Ii ∈ I \ I′, a reference image
Ri is generated synthetically from the aligned subsequence
Î′ using a weighted linear combination. Hence, the reference
images Ri will have a similar intensity distribution to that of
the referring test image. Therefore, in this registration step,
the intensity change has less influence than it would have
without using the prealigned subset I′, but the full range of
the breathing movement still needs to be accounted for.

In the following subsections, the image registration frame-
work is described in detail, and a thorough description of the
different steps of the presented approach is given, including
discussion of the method to select the prealigned subset, the
global reference image, and the particularities of the different
registration processes.

B. Image registration

Image registration can be defined as follows. Consider an
image domain Ω ⊂ Rd in the d-dimensional Euclidean space,
a test image S, a reference image R, and a transformation of
an image as a mapping T : Ω → Ω from a set of allowed
transformations Ψ , and ST (x) := S(T (x)) the test image
deformed by applying transformation T . Then, the registration
of S to R aims at finding a transformation Treg according to:

Treg := min
T∈Ψ

(F (ST , R) + κE(T )) . (1)

F measures the similarity between the deformed test image
ST and the reference, E ensures a steady and smooth trans-
formation T , and κ is a weighting factor between smoothness
and similarity. In nonrigid registration, the transformation T
needs only to be neighborhood preserving, a restriction that
is enforced by the selection of a proper term E. In our
application, the cost function F is derived from a so-called
voxel-similarity measure that takes into account the intensities
of the whole image domain. As a consequence, the driving
force of the registration is calculated directly from the given
image data.

1) Image similarity measures: MR first-pass gadolinium
perfusion studies show a strong local change in intensity
because of the dynamics of the contrast agent, which results in
local changes in the material-intensity mapping over the image
domain and with time. Global similarity measures that rely on
a consistent material-intensity mapping over the whole image
domain are, therefore, not well suited for registering these
images. Instead, a proper image similarity measure should rely
on local features to drive the registration. One example of such
a measure is the normalized gradient fields (NGF) proposed
by Haber and Modersitzki [13].

Given an image I(x) x ∈ Ω and its noise level η, a measure
ε for boundary “jumps” (locations with a high gradient) can
be defined as:

ε := η

∫
Ω
|∇I(x)|dx∫

Ω
dx

. (2)

Note, that the denominator in (2) represents the volume of Ω.
With:

‖∇I(x)‖ε :=

√√√√ d∑
i=1

(∇I(x))2
i + ε2, (3)

the NGF of an image I is defined as follows:

nε(I,x) :=
∇I(x)
‖∇I(x)‖ε

. (4)

NGF-based similarity measures for the image registration of
a test image S to a reference image R have been formulated
based on either the scalar product 〈·, ·〉 or the cross product
× of the vectors of the NGF [13]:

F
(×)
NGF(S,R) :=

1
2

∫
Ω

‖nε(R)× nε(S)‖2dx, (5)

F
(·)
NGF(S,R) := −1

2

∫
Ω

〈nε(R),nε(S)〉2dx. (6)

However, both similarity measures exhibit problems when
applied to nonrigid registration. The formulation F (×)

NGF (5) that
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Figure 3. Scheme of the registration process. In the first phase, the overall reference Iref and its prealigned subset I′ are selected, in the second phase I′

images are registered to obtain an aligned subset Î′, and in the third phase the remaining images Ii ∈ I \ I′ are registered using the corresponding synthetic
references Ri generated from the aligned subset Î′.
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is based on the cross product is zero at its minimum. However,
nε(R,x) × nε(S,x) is zero when nε(R,x) ‖ nε(S,x) (as
desired) and when either nε(R,x) or nε(S,x) has a zero
norm. Hence, F (×)

NGF may have various global minima that do
not coincide with the best solution for the image registration
task. F (·)

NGF, on the other hand, has only one global minimum
when nε(R,x) ‖ nε(S,x)∀xΩ. Yet, even though the gradient
∇F (·)

NGF is analytically zero at this optimum for practical
implementations of the gradient evaluation, e.g., by using
finite differences, the gradient may evaluate to nonzero even if
S = R, thereby making the optimization using gradient-based
methods difficult.

To prevent these problems, the measure:

d(a,b) :=
{

a− b, if 〈a,b〉 > 0,
a + b, otherwise (7)

FNGF(S,R) :=
1
2

∫
Ω

〈nε(R), d(nε(R),nε(S))〉2dx, (8)

was proposed in [12], but this introduces an unsteady first
derivative when nε(R,x)⊥nε(S,x), thereby making the reg-
istration unstable. Therefore, we refined this approach and
propose to replace (7) by:

d∗(a,b) := a− 〈a,b〉
‖a‖‖b‖

b, (9)

resulting in:

FNGF(S,R) :=
1
2

∫
Ω

(
‖nε(R)‖2 − 〈nε(R),nε(S)〉2

‖nε(R)‖‖nε(S)‖

)2

dx,

(10)
as another NGF-based cost function.

This cost function is always differentiable and both its eval-
uation and the evaluation of its derivatives are straightforward,
making it easy to use for image registration. FNGF(S,R)|x is
minimized when nε(R,x) ‖ nε(S,x). In the optimal case,
S = R the cost function and its first-order derivatives are
zero, and their evaluation is numerically stable. In addition, as
outlined by Haber and Modersitzki [13], NGF-based similarity
measures have less local minima than e.g., MI-based mea-
sures, are easier to implement, and have a low computational
complexity. However, in homogeneous areas of the reference
image, where nε(R,x) has a zero norm, FNGF(S,R) also has
a zero value and a zero gradient. Therefore, the measure is
best applied using a reference image with many gradients.
In addition, if large deformations are to be accommodated
and the images contain large homogeneous areas, nonrigid
registration can generally not be achieved using an NGF-
based measure only, and improvements are required to obtain
a robust measure.

Pluim et al. [17] proposed combining MI and gradient infor-
mation to achieve better registration results. In our application,
most of the imaged area, i.e., everything outside the heart,
will exhibit similar intensities in the test and the reference
images. In addition, as outlined below, in the final step of
our series registration, we will create synthetic references that
will exhibit a similar material-intensity mapping as the corre-
sponding test image over the whole image domain. Therefore,
as discussed in [12], we will also consider combining the

proposed NGF-based measure (10) with the sum of squared
differences (SSD) as a registration criterion in parts of the
algorithm:

FSSD(S,R) :=
1
2

∫
Ω

(S(x)−R(x))2
dx. (11)

This combined similarity measure is defined as:

FSum := λngfFNGF + λssdFSSD, (12)

with λngf and λssd to weight the two measures appropriately.
As the validation will show, it is possible, to actually use FNGF
as the sole measure in one part of the algorithm and FSSD in
the other.

2) Transformation space, regularization & optimization: In
our registration approach, the transformation is formulated in
terms of B-spline basis functions located on a regular grid of
control points i ∈ J ⊂ Z2 [18],:

T (x) := x +
∑
i∈J

ciβ
D
(x
h
− i
)
, (13)

where βD(x) is the tensor product of centered uniform B-
splines of degree D, and ci ∈ R2 are the vector value-
weighting coefficients. The parameter h governs the grid knot
spacing and, therefore, the number of registration parameters
and partially the smoothness of the solution.

To enforce smoothness of the transformation and to improve
the stability of the solution in homogeneous areas, our nonrigid
registration approach employs a regularization that is based
on the separate norms of the second derivative of each of the
deformation components [19] as energy term E(T ) in (1):

E(T ) :=
∫

Ω

d∑
i

d∑
j

∥∥∥∥ ∂2

∂xi∂xj
T (x)

∥∥∥∥2

dx. (14)

As given in eq. (1) the regularization term is weighted against
the similarity measure by a factor κ.

To solve the registration problem by optimizing (1), gener-
ally any gradient-based optimizer could be used. Specifically,
we considered a gradient descent optimizer with quadratic step
size estimation (GD) [18] and a variant of the Levenberg–
Marquardt (LM) optimizer [20] using a Hessian approx-
imation as outlined in [21]. To reduce the computational
load, only a maximum number nmax of the ntotal parameters
of the deformation function is updated during every single
iteration. Here, the nmax B-spline coefficients corresponding
to the steepest gradient values of ∇ (F (ST , R) + κE(T )) are
chosen.

Speed and robustness are improved by the use of a mul-
tiresolution approach in both the image and the transformation
space. Its implementation is based on [18]. The multiresolution
strategy makes use of a pyramid of subsampled images that
are optimal in the L2-sense, taking advantage of the spline
representation [22].

C. The automatic motion-correction algorithm

A scheme of the automatic motion-correction algorithm as
summarized in subsection II-A is shown in Fig. 3. In this
section, we describe the three stages of the algorithm in more
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detail: first, the selection of the global reference Iref and the
subset of prealigned images I; second, the registration process
of the prealigned subset; and finally the alignment of the rest
of the images in the sequence.

1) Selecting a global reference and the prealigned subset:
The motion-correction procedure requires that all the images
from the sequence be transformed to the same spatial reference
framework. This process is accomplished by registering all
images directly or indirectly to a certain global reference
image Iref .

The selection of the global reference Iref is based on
finding an image with high contrast to ensure that NGF-
based similarity measures generally give a good response and
on finding an image that provides strong periodicity in its
sequence-similarity profile:

F := {FNGF(Ii, Iref)|Ii ∈ I}. (15)

The application of sequence-similarity profiles for selecting
a good reference has been used previously in [23]. Because
the LV does not exhibit any usable gradients before the
contrast agent passes through it, the search range for Iref
will be restricted to the sequence interval starting at the LV
enhancement peak.

Once the global reference is selected, its corresponding
sequence-similarity profile F comprises a representation of the
quasiperiodic movement and allows the selection of images
corresponding approximately to the same breathing phase.
To perform this step automatically, an extreme phase of the
breathing movement has been selected.
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Figure 4. Sequence-similarity profiles with respect to two different global
reference image candidates and their respective overall frequency spectra.
Note, that reference image 13 is a better candidate because its sequence-
similarity profile exhibits stronger periodicity, which is reflected by the high
energy value in the frequency spectrum.

In more detail, to obtain Iref , for each image Ii ∈ I, we first
estimate the standard deviation σ(Ii) of its pixel intensities as
an indicator of the image’s contrast. We next select a subset
of the images with the highest intensity standard deviations;
these comprise the candidate set I∗ for the overall reference
image. Then, for all Ik ∈ I∗, we evaluate the sequence-
similarity profiles fk = {FNGF(Ii, Ik)|Ii ∈ I}. The profile
fk that exhibits the strongest periodicity is identified based
on its Fourier transform. Because fk comprises real numbers
only, its Fourier transform is symmetric and we only need
to take into account the positive frequency coefficient. Here,

we select the profile F = fk∗ with index k∗ that exhibits the
largest absolute value in the positive frequency coefficients of
its Fourier transform. It corresponds to the profile where most
of the signal energy is concentrated in one frequency, which in
turn points to a strong periodic component (Fig 4). Therefore,
our global reference image will be Iref = Ik∗ .

Next, we choose all Ii ∈ I for which FNGF(Ii, Iref) ∈ F
exhibits a local minimum:

FNGF(Ii, Ik∗) < FNGF(Ii±m, Ik∗)∀m = 1, 2. (16)

These images form the phase-aligned subsequence of the
quasiperiodic motion.
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Figure 5. Series reference and prealigned subset obtained by the first step of
the algorithm. Note the even distribution of the time points selected for the
subset.

Because of the quasiperiodic nature of the breathing move-
ment, the images of this subset will be evenly distributed over
the time series (Fig. 5). To ease the implementation of the last
registration step, we also add the first and the last image of
the series to this set to obtain the subset I′ ⊂ I for the initial
registration step.

2) Aligning the prealigned subset: In this step, we register
all images I ∈ I′ to Iref following the registration method
described in subsection II-B. Because these images will ex-
hibit strong differences in their intensity, using a combined
similarity measure that also employs FSSD (11) would be
counterproductive. In addition, because these images all stem
from the same breathing phase and are, therefore, already well
aligned, using FNGF (10) as the registration criterion should
suffice. As a result of this step, we obtain a phase-aligned-
registered subset Î′ of the original image series I.

3) Aligning the remaining images: In the last processing
step, we pick up on the idea of Milles et al. [2] to create
synthetic reference images to overcome the intensity change.
For each unregistered image Ii ∈ I\I′, we first select the two
registered images from the phase-aligned subset Ii− , Ii+ ∈ Î′

that enclose Ii in the temporal continuity:

i− < i+ ∧ i ∈ (i−, i+) ∧
(
i+ − i−

)
→ min . (17)

Because we added the first and the last image of the series
to the subset I′, these two images Ii− , Ii+ always exist.
Then, a reference image Ri is created as a weighted linear
combination:

Ri(x) :=
i− i−

i+ − i−
Ii+(x) +

i+ − i
i+ − i−

Ii−(x). (18)
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Because of the quasiperiodic motion, one of the preregis-
tered images can be found about every five frames. Therefore,
the images used to create the weighted combination are
very close to each other, and for most of the series, linear
interpolation should suffice to create reference images Ri that
will exhibit a similar intensity distribution like Ii, the image
to be registered to.

Compared with Milles et al. [2], who reported that the
synthetic reference images created from the ICAs were blurred
and thus needed a multipass scheme, in our approach, the
interpolated images used to create the reference images are
already registered and, therefore, no multipass scheme is
required.

In the optimal case, creating synthetic reference images
make it possible to use FSSD as the only registration criterion.
However, at the beginning of the image series, when the
contrast agent passes through the right and left heart ventri-
cles, the intensity change is not modeled well by the linear
interpolation, and using FSum (12) as the registration criterion
may be a better choice. Therefore, we investigated the best
weighting between FSSD and FNGF in FSum during validation.

D. Approaching validation
Various methods have been proposed for validation includ-

ing tracking the LV center [2], [24]; correlation and/or the
mean square error between manually obtained intensity pro-
files and automatically obtained profiles [2], [15]; measuring
the per-frame intensity variation within the myocardium [2];
counting the number of false-positive/false-negative pixels of
masks of the myocardium obtained from a reference in the reg-
istered sequence, with respect to a manual segmentation [24];
and the myocardial boundary error defined as the minimum
distance between the myocardial contours obtained from the
hand segmentation and the registered slices [24].

Considering these validation techniques, tracking the LV
center is not an appropriate approach to validate our method-
ology because this method does not account for differences in
rotation and nonrigid deformation and, therefore, we did not
use it for validation purposes.

Segmentation based methods could be also used. However,
the accurate tracking of corresponding anatomical features
through time in perfusion studies is not an easy and repeatable
task. Firstly, at the beginning of the series the myocardium
and the left ventricular cavity exhibit the same intensities.
Secondly, the papillary muscles and the myocardium often also
exhibit the same intensities. In order to assess the reliability
of segmentations we repeated the series segmentation in two
slices by two observers obtaining a mean Hausdorff distance of
3.6mm and a maximal Hausdorff distance of 5.7mm between
the segmented boundaries of the myocardium. These errors
in the segmentation would show up as misregistrations when
segmentation based statistics are used that analyze the my-
ocardial boundary error or false-positive/false-negative pixels.
Therefore, segmentation based methods were not used to
assess the quality of the correspondence of the boundaries or
the section overlap in the registered series.

However, when assessing the performance of the intended
task – perfusion analysis through intensity profiles – we

confirmed that the influence of the segmentation differences
was quite small, and hence, using intensity profiles obtained
from manually segmented series as a gold standard for this
comparison is still an effective approach for validation. There-
fore, we generally provide methods to assess the quality of the
image registration by analyzing time–intensity curves.

For a first automatic assessment of the registration quality,
we measure how well the structures are aligned by focusing
on the pixel-wise intensity curves over time. Here, the second-
order intensity derivative is of interest. In a registered series,
only the perfusion by the contrast agent will induce an inten-
sity change, and its temporal gradient changes rapidly thereby
producing outliers when the contrast agent enters, reaches
saturation, or leaves the area corresponding to the pixel.
By contrast, in an unregistered series, the temporal gradient
may also change rapidly at tissue boundaries. Therefore, we
propose to use the median of the absolute values of the second-
order derivative of the pixel intensity over time as quality
measure. It is expected to be much lower in a registered series
than in its corresponding unregistered series. To obtain this
gradient-based measure, we first reduce the interacquisition
noise by smoothing the pixel-wise intensities over time by
applying a Gaussian filter G of width 5:

IG5(x, i) :=
2∑

k=−2

G5(k)I(x, i− k). (19)

The smoothed image series IG5 = {IG5(i)|i ∈ Θ} is then used
to evaluate the median second-order derivative image pixel-
wise:

ID2(x) := mediani∈Θ

(
d2IG5(x, t)

dt2

∣∣∣∣
t=i

)
. (20)

For every sequence, we restrict the evaluation of these images
to the region around the LV, which was obtained by enlarging
the LV bounding box obtained from the manual segmentation
of the LV myocardium that is required for the analysis of the
intensity profiles described below. Finally, to obtain a single
measure of image alignment, we evaluate the mean intensity

D2 :=

∫
Ω
ID2(x)dx∫

Ω
dx

, (21)

of this median time-derivative image ID2 . For a better inter-
pretation of this value D2, we compared the results evaluated
from the free-breathing acquired series before and after regis-
tration with values obtained from the nonmoving initial images
of a series of three slices acquired during breath holding.

However, the above measure is useful only for preliminary
assessment of how well gray-scale values are aligned by the
registration method. For a more thorough validation, we turn
to the comparison of perfusion profiles obtained from the
registered image series with profiles obtained by manually
segmenting the myocardium in the original sequences. There-
fore, as a prerequisite, in all images of every sequence, the
myocardium of the LV was segmented manually into six
transmural segments S = {s1, s2, ..., s6} (Fig. 6) counting
clock-wise and starting at the LV and RV anterior intersection.

The reference intensity profiles K(s)
ref of the segments s ∈ S

over the image series were obtained by evaluating the average
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Figure 6. Segmentation of the LV myocardium into six segments and
horizontal and vertical profiles of the original image series before motion
correction. Note that, in the profiles, the breathing movement is evident in
the zigzag lines that visualize the movement at tissue boundaries.

intensities in these regions and plotting these over the time
of the sequence. By using only the segmentation of the
reference image Iref as a mask to evaluate the intensities in
all registered images, the test intensity profiles K

(s)
reg were

obtained. The intensity profiles K(s)
orig for the unregistered series

were evaluated similarly.
To make it possible to compare the sequences of different

image series, the intensity curves K were normalized based
on the reference intensity range [vmin, vmax], with vmin :=
mins∈S,t∈ΘK

(s)
ref (t) and vmax := maxs∈S,t∈ΘK

(s)
ref (t):

K̂ :=
{

v − vmin

vmax − vmin

∣∣∣∣ v ∈ K} . (22)

To quantify the effect of the motion correction, the quotient
of the average absolute distance between the registered and
reference curves, K̂(s)

reg and K̂
(s)
ref and the average absolute

distance between the unregistered and reference curves, K̂(s)
orig

and K̂(s)
ref , are evaluated, producing the value Qs as a quality

measure of the registration with respect to each section s ∈ S:

Qs :=
∑
t∈Θ |K̂

(s)
reg (t)− K̂(s)

ref (t)|∑
t∈Θ |K̂

(s)
orig(t)− K̂(s)

ref (t)|
. (23)

As a result, we obtain Qs > 0 with smaller values indicating
better registration.

We also evaluated the squared Pearson correlation coef-
ficient R2 of the manually obtained intensity profiles and
the corresponding postregistration profiles. The range of this
coefficient is R2 ∈ [0, 1] with higher values indicating a
better correlation between the data sets. However, because the
correlation accounts only for linear dependencies, neither an
error in scaling nor an intensity shift is caught by this measure.

Finally, we consider the average standard deviation of the
intensity in the six segments si of the myocardium σsi,t :=

∑
t∈Θ σ(si) as obtained by using the myocardial mask of the

reference image Iref to the motion-corrected sequence. Because
the intensity in these regions is relatively homogeneous with
a good alignment of the images, only noise and the intensity
differences caused by disease should influence this value. In
particular, in the first part of the perfusion image series, when
the contrast agent passes through the RV and LV, this approach
makes it possible to assess the registration quality without
comparing it with the manual segmentation. Any misalignment
between the section mask of the reference image and the
corresponding section of the analyzed series frame will add
pixels of the ventricular cavity to one or more segments,
increasing the intensity range, and hence its standard deviation.
Therefore, with proper alignment, this value will decrease.

For all measures, the statistical measures average, standard
deviation, median, minimum, and maximum were evaluated
and used to compare the results.

E. Comparison with rigid registration

To assess the differences between applying rigid registration
and nonrigid registration for motion compensation, we used
two approaches. In one approach, we implemented the ICA-
based registration scheme [2]. In the other approach, we
implemented our motion-compensation scheme by replacing
the nonrigid registration by an implementation for rigid reg-
istration [25] that makes use of The Insight Toolkit (ITK)
[26]. As discussed later in section III-D3, rigid registration
including rotation turned out to be unstable. Therefore, the
rigid movement was restricted to translation only. Optimization
was achieved by using the regular gradient descent optimizer
provided in the ITK library. This approach was run on cropped
images series containing only the LV.

III. EXPERIMENTS AND RESULTS

A. Image data

First-pass contrast-enhanced myocardial perfusion imaging
data sets were acquired and processed for six subjects un-
der clinical research protocols approved by the Institutional
Review Boards of the National Heart, Lung, and Blood In-
stitute and Suburban Hospital. The patients provided written
informed consent, and the analysis was approved by the
NIH Office of Human Subject Research. Two distinct pulse
sequences were used for image acquisition: a hybrid GRE-
EPI sequence and a true-FISP sequence. Both sequences
were ECG-triggered and used 90-degree-saturation recovery
imaging of several slices per R–R interval acquired for 60
heartbeats. The pulse sequence parameters for the true-FISP
sequence were 50-degree readout flip angle, 975 Hz/pixel
bandwidth, TE/TR/TI = 1.3/2.8/90 ms, 128 × 88 matrix, 6 mm
slice thickness. The GRE-EPI sequence parameters were 25-
degree readout flip angle, echo train length = 4, 1500 Hz/pixel
bandwidth, TE/TR/TI = 1.1/6.5/70 ms, 128 × 96 matrix, 8
mm slice thickness. The spatial resolution was about 2.8 mm
× 3.5 mm. Parallel imaging using the TSENSE [27] method
with acceleration factor = 2 was used to improve temporal
resolution and spatial coverage.
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Motion correction was performed for three short-axis slices
of the six patients {A, B, ..., F } (18 distinct slices total)
covering different levels of the LV myocardium (basal, mid,
and apical levels). For all but one patient, a single dose of
contrast agent (Gd-DTPA, 0.1 mmol/kg) was administered at
2.5 ml/s, followed by saline flush. For Patient C the dose
was 5 ml/s instead. Images were generally reconstructed to
a final matrix size of 256 × 192 (3/4 phase FOV) using zero
filling for interpolation. In the case of Patient A, the final
matrix size was 256 × 196, and in the case of Patient B,
128 × 128. The data for Patient D were acquired with a
shallow breathing protocol, and all other series were acquired
using free breathing. Mistriggering occurred in only one time
step in the data set of Patient A. Of the slices obtained, the
first two were baseline images taken with a proton density-
weighted protocol and, therefore, exhibited a different intensity
distribution compared with the rest of the series. For that
reason, these images were omitted from the analysis.

B. Parameters

In the first step of the algorithm, we set the search range
for the global reference to [20,N]. The nonrigid registration
approach used uniform cubic B-Splines for the transformation
with Dirichlet boundary conditions. To investigate the best
parameter combination, we tested the performance of the
algorithm in terms of the quality measure Q using different
parameter values for the knot spacing h ∈ {5, 7, 10, 16, 22, 26}
given in pixels for the B-spline grid, and the weight κ ∈
{1.0, 5.0, 10.0, 20.0} of the regularization term. For the last
part of the registration scheme, i.e., the registration of the im-
ages not corresponding to the respiratory phase-aligned subset,
we used (λngf, λssd) ∈ {(0, 1), (1, 1), (1, 1

2 ), (1, 1
10 ), (1, 0)} as

weights between the FNGF and FSSD . Estimating the noise
level of images is difficult, and we only approximated it by
using the standard deviation of the intensity gradient norm:
η ≈ σ(‖∇I(x)‖).

After some initial experiments, the number of multiresolu-
tion levels l was fixed to 3.

C. Implementation and run time

The analysis software was implemented as a mix of Python
for selecting the reference image and the prealigned subset,
and a set of C++ programs to run the registration and to
evaluate similarity measures. The software was run on a Linux
workstation equipped with an Intel Pentium Core2 6600 and 4
GB of working memory. The complete run time of the nonrigid
registration scheme of a series with 60 images of size 256 ×
192 pixels was about 3 min. This time could be reduced easily
by running the registration in parallel.

D. Results

Following the scheme described above, a good reduction of
the breathing motion was achieved for all image data sets. A
first visual assessment of the registration results was obtained
by observing videos of the registered images and by analyzing
the time profiles of the image series (Fig. 7). Examples of these
videos are available online [28].

Figure 7. Profiles (Patient E) cut through the time stack at the locations
indicated in Fig. 6. In the original series (upper row), the breathing movement
is clearly visible. In the registered series (lower row), this movement is nearly
completely removed.

Analyzing the ID2 images (Fig. 8) before and after registra-
tion confirms these results. A visual inspection shows a clear
reduction in the median second-order time–intensity gradient
after registration in the areas of the moving heart (Fig. 8). Ta-
ble I shows the summary over all time series of the analysis of
the D2 registration quality measure corresponding to the mean
time–intensity deviation over the region of interest, which
results in a clear improvement. The results after registration
are similar to the ones obtained from nonmoving image series,
indicating that the remaining gradients over time result mainly
from noise.

Figure 8. ID2 image (Patient A): Note the high values before registration
(left) that correspond to the intensity changes at the tissue boundaries resulting
from movement and that are represented by the zigzag line in the profile
images (Fig. 7). The absence of these high values after registration marks the
successful alignment (right).

Table I
GENERAL REGISTRATION QUALITY BASED ON D2

Mean SD Median Min Max
unregistered 2.55 1.25 2.35 1.05 5.12
registered 1.32 0.35 1.29 0.77 1.99

nonmoving reference 1.66 0.08 1.65 1.58 1.75

Statistical analysis of the registration quality based on the median of the
second-order derivative of the pixel-wise intensity over time (D2) (a smaller
number is better).

The registration results were also confirmed by observing
the signal intensity time courses in different regions of the
myocardium and by comparing these with the manually seg-
mented intensity curves. Fig. 9 shows the intensity curves of
the corresponding sections of the LV myocardium represented
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in Fig. 6. In the example given (Patient A, basal), a clear
improvement is observed for all regions, enabling further
automatic analysis of the myocardial perfusion and easier
visual inspection.
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Figure 9. Intensity curves before and after registration compared with the
manually obtained curves in three segments of the basal slice of Patient A.
Note the periodic intensity variations in the unregistered series caused by the
breathing movement and how the registered series more closely resembles
the manually obtained intensity curves. The spike in the intensity curve in
(a) is caused by an error in triggering, which is amplified by the breathing
movement but damped in the other sections. As one can see, the nonrigid
registration can also compensate for this error.

1) Optimal parameters set: Using FSSD as the only criterion
in the second phase of the registration, employing l = 3
multiresolution levels, a value of κ = 15.0 as the regularization

weight, a knot spacing of h = 5 pixels, and the modified
Levenberg–Marquardt optimizer results in a good registration
in all cases with a slight deviation for patient C that will be
discussed later. This parameter set corresponds to an averaged
quality measure of Q = 0.62, an averaged correlation coeffi-
cient of R2 = 0.96, and an average intensity variation of σ =
0.53 as given in Table II. Nevertheless, based on our statistical
analysis of the parameter set given above, using regularizer
weights of κ ∈ [5.0, 20.0], (λngf, λssd) ∈ {(0, 1), (1, 1)},
and h ∈ [5, 16], all give comparable registration results, i.e.,
according to the Welch two-sample t test (p = 0.05) the
average values for Q, σs, and R2 do not differ significantly.
As for the comparison between the application of LM and
GD as optimizers and as suggested in [18], the modified
implementation of the LM generally needed fewer iterations
to converge, and it resulted in a slightly higher registration
accuracy. The gradient descent, on the other hand, needed less
time and less working memory to achieve similar registration
results.

For patient C the dose of contrast agent used was twice
as high as for the other patients, this resulted in a stronger
intensity change before LV peak enhancement, and therefore,
the linear interpolation used to create synthetic reference
images in the last registration step didn’t model the intensity
change well. As a result, the registration resulted in artifacts
at the beginning of the series that could be compensated by
using higher values for the regularization weight and a larger
B-spline knot spacing at the cost of more residual movement
after registration.

Table II
MEASURES OF REGISTRATION QUALITY

λngf, λssd Mean SD Median Min Max
Q smaller is better 0, 1 0.62 0.26 0.62 0.14 1.38
R2 unreg 0.87 0.18 0.94 -0.17 1.00
larger is better 0, 1 0.96 0.09 0.98 0.09 1.00
σs unreg 0.66 0.34 0.58 0.15 2.33
smaller is better manual 0.45 0.14 0.45 0.17 0.84

0, 1 0.53 0.23 0.49 0.14 1.26

The registration quality Q, the correlation R2, and the average intensity
variation σ, analyzed for all 18 data sets (108 myocardial segments) of the full
series FSSD is the only registration criterion in the second registration step. The
remaining registration parameters are fixed to l = 3 multiresolution levels, a
B-spline knot spacing of h = 5, and a regularizer weight of κ = 15.0.

2) Slice location-based analysis: One may also compare
the results for the different slices with respect to the position
relative to the heart. The results shown in Table III suggest
that the registration at the apex performs worse than that in
the other imaging planes. This is not surprising because at the
apex, the out-of-plane motion is usually greater than in the
other planes, and this motion cannot be corrected by a 2D
registration algorithm.

The intensity–time curves for the hand-segmented, unreg-
istered, and registered series, as well as the quality measures
for each slice are given in a separate technical report [28]. At
request we also provide the raw time–intensity data and the
scripts used to obtain the reported results.

3) Comparison with rigid registration-based methods:
Comparing the registration results with other published results
is difficult because different data sets have been used, and the
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Table III
SEPARATED BY SLICE LOCATION

Q R2 σ
unreg reg unreg manual reg

apex 0.65 0.87 0.95 0.50 0.37 0.40
mid 0.56 0.87 0.98 0.51 0.35 0.41
basal 0.53 0.85 0.97 0.72 0.54 0.60

The registration quality Q analyzed by slice location for registration param-
eters fixed to l = 3 multiresolution levels, a B-spline knot spacing of h = 5,
and a regularizer weight of κ = 15.0 and λngf = 0, λssd = 1 is the last
registration phase.

exact methodologies used to obtain the statistical results are
not described thoroughly. Therefore, selecting a measure to
compare results fairly is almost impossible. Milles et al. [2]
used various measures to describe registration accuracy, among
them Pearson’s correlation coefficient R2 between manually
obtained intensity curves and automatically derived ones. They
reported R2 values of 0.88±0.16 before and 0.92±0.10 after
registration [2].

Before registration our image data is comparable to theirs
as it exhibit a similar mean correlation R2 of 0.87 ± 0.18.
After registration, the obtained intensity curves correlate better
on average with a lower standard deviation, suggesting better
motion correction with our method, i.e. we obtained an average
R2 of 0.96 ± 0.09 (Table II). This is not surprising because
in terms of registration accuracy, nonrigid motion correction
should outperform rigid registration.

To validate this finding, we ran the ICA-based registration
approach as reported in [2]. For data with initial breath hold-
ing, this approach worked as expected, which confirmed that
we had implemented the method properly. However, in free-
breathing data, the periodic movement made the estimation
of the RV and LV peak enhancement time point unstable, and
thus automatic mask creation was difficult. Applying the ICA-
based method to the cropped images, thereby circumventing
the mask creation, also did not produce reliable registration
results.

We then modified our scheme presented here by replac-
ing the nonrigid registration with rigid registration and then
applied the method to cropped images containing only the
LV region. However, the use of the ITK framework for rigid
registration required a fine-tuning of the scaling between the
rotational and translational parameters that highly influenced
the registration result and made the procedure unstable. By
further restricting the transformation space Ψ to translations
only, this parameter tuning was no longer needed and a more
stable rigid registration could be achieved. Note, that the
rigid registration method used in [2] also optimizes only the
translation.

As a result, a reasonably good and stable registration could
be obtained for 16 of the 18 slices, but for these 16 slices,
only the subset of the slices beginning at and after LV peak
enhancement registered well. In some series, before LV peak
enhancement the cropped images did not contain sufficient
gradient information to obtain a reliable rigid registration of
the prealigned subset. In these cases it could happen that
the gradient-based rigid registration actually aligned a part of
the outer wall of the myocardium in one image to a part of

the inner wall in the other image, which in turn resulted in
misaligned synthetic references for the final registration step.
This effect does not occur with the non-rigid registration of the
full images, because here the smoothness constraint combined
with the non–moving parts surrounding the heart limit the
freedom of the transformation.

In summary, employing rigid registration generally per-
formed less optimally than using nonrigid registration. This
is even the case when the instabilities described above are
avoided by running the analysis only for images after LV peak
enhancement and by restricting the transformation space Ψ to
translations only (Table IV).

Table IV
RESULTS COMPARING RIGID AND NONRIGID REGISTRATION

Measure Mean SD Median Min Max
R2 0.88 0.22 0.97 -0.43 1.00

rigid Q 0.85 0.43 0.79 0.13 2.88
σs 0.59 0.30 0.59 0.20 2.27
R2 0.96 0.07 0.98 0.53 1.00

nonrigid Q 0.63 0.26 0.64 0.11 1.37
σs 0.56 0.25 0.50 0.15 1.35

Results obtained using rigid registration allowing translations only instead
of nonrigid registration in our scheme compared with results obtained by
the nonrigid registration scheme. Compared with Table II the analysis was
restricted to the time after LV peak enhancement. All three measures indicate
that nonrigid registration performs better.

IV. DISCUSSION AND FUTURE WORK

Allowing a patient to breathe freely during myocardial
perfusion image acquisition has some advantages over asking
the patient to hold his or her breath. On one hand, the
procedure is easier for the patient. On the other hand, normal
free breathing typically results in smaller, more periodic, and
hence, predictable movements, which are easier to correct for
respiratory motion than breath holding in situations when the
patient can no longer hold the breath and takes a large gasp.

Following this protocol, the obtained image series pose two
problems: the strong local difference in image intensities and
the breathing movement. In this case, registering all images
to one reference directly is usually unreliable, and serial
registration can fail because of error propagation.

Based on these assumptions, we propose a fully automated
approach based on nonrigid image registration to correct for
the breathing movement by taking into account the advantages
of free-breathing acquisition protocols as follows. First, by
aligning a subset of the image series acquired at a similar
breathing phase, we can establish a baseline of registered
images that first ensures that no error propagation occurs.
Second, because these images are already well aligned, the
challenge in their registration is reduced to dealing with
the strong local intensity change. Third, by using intensity-
interpolated images as references for the registration of the
remaining images, which are very close in the temporal series,
the problem of intensity change is reduced significantly in the
last phase of the algorithm.

In the first phase of the registration, the image pairs will
naturally exhibit strong differences of the intensity–material
mapping. Therefore, we rely on the normalized gradient-based
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similarity measure FNGF as the registration criterion. The
normalized gradient-based similarity measure FNGF has some
advantages over well-known measures based on information
theory, e.g., MI. The evaluation of FNGF can be implemented
easily, and it has a low computational footprint. In addition, it
is a local measure in the sense that contributions to the overall
cost function are based only on the very close vicinity of each
pixel. Therefore, it is well suited to accommodate the local
intensity change induced by the contrast agent passing through
the heart ventricles and the myocardium. However, because of
this local nature of the NGF-based measure, it is not advisable
to use it as the sole criterion when large differences between
images must be accommodated.

Therefore, in the second phase, learning from previous
experience [12], we performed the analysis using a weighted
combination of FNGF and FSSD as the registration criterion.
The validation showed that one can actually omit FNGF from
this measure because the synthetically generated references
generally model the intensity distribution of the corresponding
unregistered images well enough. Only at the beginning of
the series, when the contrast agent passes through the right
heart ventricle, the linear interpolation sometimes did not
produce good reference images resulting in worse motion
compensation in this phase of the sequence. This is the
case for high contrast data (Patient C). In addition, when
applying the method to shallow breathing data (Patient D),
the selection of the prealigned subset in the first step of the
algorithm may result in a poor distribution of references.
While it is possible to compensate for these problems by
applying a higher weight to the regularization term and a
larger knot spacing (as we did in the case of patient C), this
usually results in more residual movement after registration
and, hence, in less over-all alignment. Therefore, to make
the algorithm more robust, other interpolation strategies could
be used to model the intensity change better when creating
the synthetic references. By comparing the intensity–time
curves obtained from our registered image sets with manually
acquired images, we were able to prove that our proposed
method yields good results for motion correction. Compared
with the nonregistered data, the corrected intensity curves align
well with the manually acquired sets (Figure 9), improving
both the visual and quantitative analysis significantly. With
the validation method in place, we were also able to optimize
the parameters to obtain the best registration results.

Finally, a comparison of our validation results with those
reported by Milles et al. [4], who relied on rigid registration
only, suggests that the nonrigid registration described above
produces greater registration accuracy. We ran their ICA-based
registration scheme for comparison and, although the method
worked well for breath-holding data, thereby confirming their
results and validating our implementation, its application to
free-breathing data was not robust. Replacing the nonrigid
registration method by rigid registration in our method did
not provide a stable motion-compensation scheme. In the
cases where it worked reasonably well, the rigid registration
method performed worse than the proposed nonrigid registra-
tion scheme.

Future work will include comparing this method with other

approaches. We also plan to exploit the quasiperiodicity of
free breathing even more by targeting an optimization process
that would register all images in one step to describe the
quasiperiodic transformation using a spatiotemporal transfor-
mation model [29].
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